PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2412.
Published online 2008 November 22. doi:  10.1107/S1600536808038270
PMCID: PMC2960035

Benzaldehyde thio­semicarbazone

Abstract

The title compound, C8H9N3S, contains two mol­ecules in the asymmetric unit. One mol­ecule is close to being planar (r.m.s. deviation from the mean plane = 0.06 Å for the non-H atoms), while the other exhibits a dihedral angle of 21.7 (1)° between the benzene ring and the mean plane of the thio­semicarbazone unit. Inter­molecular N—H(...)S hydrogen bonds link the mol­ecules into layers parallel to the (010) plane.

Related literature

For background literature concerning aryl­hydrazone compounds, see: Beraldo & Gambino (2004 [triangle]); Bondock et al. (2007 [triangle]). For the related 2,4-dichloro­benzyl­idene compound, see: Jing et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2412-scheme1.jpg

Experimental

Crystal data

  • C8H9N3S
  • M r = 179.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2412-efi1.jpg
  • a = 5.8692 (13) Å
  • b = 12.513 (2) Å
  • c = 13.519 (2) Å
  • α = 112.735 (3)°
  • β = 95.384 (2)°
  • γ = 96.153 (2)°
  • V = 900.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 298 (2) K
  • 0.24 × 0.13 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.930, T max = 0.970
  • 4740 measured reflections
  • 3124 independent reflections
  • 1846 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.162
  • S = 0.95
  • 3124 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038270/bi2310sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038270/bi2310Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. DCLG2008002).

supplementary crystallographic information

Comment

Aryl-hydrazones, such as semicarbazones, thiosemicarbazones and guanyl hydrazones, often exhibit strong biological activity and are important compounds for drug design (Beraldo & Gambino, 2004), organocatalysis and the preparation of heterocyclic rings (Bondock et al., 2007).

Experimental

Benzaldehyde (0.3 mmol), thiosemicarbazide (0.3 mmol) and 10 ml water were mixed in a 50 ml flask. After stirring for 30 min at 373 K, the resulting mixture was recrystallized from ethanol, affording the title compound as colourless crystals. Elemental analysis: calculated C 53.61, H 5.06, N 23.44%; found: C 53.58, H 5.55, N 23.51%.

Refinement

H atoms were placed in geometrically idealized positions (N—H = 0.86, C—H = 0.93 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C/N).

Figures

Fig. 1.
Two molecules in the asymmetric unit of the title compound with displacement ellipsoids shown at 30% probability for non-H atoms.

Crystal data

C8H9N3SZ = 4
Mr = 179.24F000 = 376
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.8692 (13) ÅCell parameters from 1310 reflections
b = 12.513 (2) Åθ = 2.9–25.0º
c = 13.519 (2) ŵ = 0.31 mm1
α = 112.735 (3)ºT = 298 (2) K
β = 95.384 (2)ºBlock, orange
γ = 96.153 (2)º0.24 × 0.13 × 0.10 mm
V = 900.4 (3) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3124 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.930, Tmax = 0.970k = −12→14
4740 measured reflectionsl = −16→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.162  w = 1/[σ2(Fo2) + (0.0856P)2] where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max < 0.001
3124 reflectionsΔρmax = 0.31 e Å3
217 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9674 (5)0.8260 (3)0.9684 (2)0.0484 (8)
N21.1667 (5)0.8822 (3)0.9512 (2)0.0504 (8)
H21.29340.89990.99560.061*
N30.9536 (5)0.8863 (3)0.8034 (2)0.0550 (9)
H3A0.83310.85630.82080.066*
H3B0.94140.90200.74670.066*
N40.3374 (5)0.7659 (3)0.4823 (2)0.0486 (8)
N50.4649 (5)0.8653 (3)0.5625 (2)0.0518 (8)
H50.42000.89500.62490.062*
N60.7036 (6)0.8737 (3)0.4423 (3)0.0612 (10)
H6A0.60920.81660.39300.073*
H6B0.82620.90310.42590.073*
S11.40293 (17)0.96409 (10)0.83250 (8)0.0561 (3)
S20.83277 (19)1.02721 (9)0.64490 (8)0.0610 (4)
C10.9813 (7)0.8063 (3)1.0543 (3)0.0500 (9)
H11.11690.83411.10400.060*
C20.7837 (7)0.7398 (3)1.0749 (3)0.0493 (10)
C30.5747 (7)0.7039 (3)1.0076 (3)0.0569 (10)
H30.55660.72290.94750.068*
C40.3920 (8)0.6403 (4)1.0277 (4)0.0660 (12)
H40.25160.61670.98140.079*
C50.4178 (9)0.6118 (4)1.1169 (4)0.0700 (13)
H5A0.29500.56901.13090.084*
C60.6255 (9)0.6472 (4)1.1845 (4)0.0675 (12)
H60.64310.62831.24470.081*
C70.8081 (8)0.7104 (3)1.1640 (3)0.0584 (11)
H70.94860.73361.21000.070*
C81.1574 (6)0.9084 (3)0.8637 (3)0.0438 (9)
C90.1484 (7)0.7251 (3)0.5034 (3)0.0484 (9)
H90.09690.76580.56870.058*
C100.0129 (6)0.6152 (3)0.4263 (3)0.0455 (9)
C11−0.2018 (7)0.5775 (4)0.4462 (4)0.0607 (11)
H11−0.26220.62460.50650.073*
C12−0.3267 (8)0.4700 (4)0.3766 (4)0.0695 (13)
H12−0.47160.44530.38980.083*
C13−0.2378 (9)0.4002 (4)0.2889 (4)0.0736 (13)
H13−0.32050.32700.24350.088*
C14−0.0287 (9)0.4368 (4)0.2671 (4)0.0730 (13)
H140.02870.38930.20600.088*
C150.0981 (7)0.5436 (3)0.3350 (3)0.0576 (11)
H150.24100.56800.31980.069*
C160.6604 (6)0.9162 (3)0.5434 (3)0.0443 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0460 (19)0.0479 (18)0.0522 (19)0.0088 (15)0.0119 (15)0.0195 (15)
N20.0434 (18)0.056 (2)0.0511 (19)0.0056 (15)0.0037 (15)0.0225 (16)
N30.0415 (19)0.072 (2)0.0521 (19)−0.0021 (16)0.0018 (16)0.0296 (17)
N40.0452 (19)0.0479 (18)0.0471 (18)−0.0024 (15)0.0008 (15)0.0170 (15)
N50.048 (2)0.0513 (19)0.0488 (19)−0.0080 (15)0.0049 (15)0.0170 (15)
N60.055 (2)0.063 (2)0.055 (2)−0.0165 (17)0.0107 (17)0.0171 (17)
S10.0434 (6)0.0700 (7)0.0494 (6)0.0008 (5)0.0081 (5)0.0196 (5)
S20.0595 (7)0.0634 (7)0.0504 (6)−0.0189 (5)−0.0037 (5)0.0224 (5)
C10.054 (2)0.046 (2)0.049 (2)0.0123 (19)0.0080 (19)0.0165 (18)
C20.060 (3)0.039 (2)0.047 (2)0.0102 (19)0.014 (2)0.0133 (17)
C30.058 (3)0.057 (3)0.056 (2)0.012 (2)0.004 (2)0.023 (2)
C40.054 (3)0.060 (3)0.082 (3)0.013 (2)0.011 (2)0.024 (2)
C50.078 (3)0.053 (3)0.083 (3)0.010 (2)0.033 (3)0.028 (2)
C60.088 (4)0.058 (3)0.060 (3)0.011 (3)0.021 (3)0.026 (2)
C70.071 (3)0.048 (2)0.050 (2)0.004 (2)0.006 (2)0.0163 (19)
C80.044 (2)0.043 (2)0.040 (2)0.0094 (17)0.0079 (18)0.0112 (17)
C90.044 (2)0.050 (2)0.051 (2)0.0031 (18)0.0108 (18)0.0215 (18)
C100.039 (2)0.044 (2)0.054 (2)0.0005 (16)0.0022 (17)0.0224 (18)
C110.049 (2)0.062 (3)0.074 (3)−0.001 (2)0.013 (2)0.032 (2)
C120.047 (3)0.070 (3)0.094 (4)−0.012 (2)−0.001 (2)0.043 (3)
C130.078 (3)0.048 (3)0.081 (3)−0.012 (2)−0.015 (3)0.022 (2)
C140.078 (3)0.062 (3)0.066 (3)0.002 (3)0.005 (3)0.015 (2)
C150.052 (2)0.053 (2)0.063 (3)0.000 (2)0.007 (2)0.020 (2)
C160.044 (2)0.044 (2)0.048 (2)−0.0003 (17)0.0004 (18)0.0248 (18)

Geometric parameters (Å, °)

N1—C11.274 (5)C3—H30.930
N1—N21.385 (4)C4—C51.384 (6)
N2—C81.342 (5)C4—H40.930
N2—H20.860C5—C61.371 (7)
N3—C81.320 (5)C5—H5A0.930
N3—H3A0.860C6—C71.377 (6)
N3—H3B0.860C6—H60.930
N4—C91.274 (5)C7—H70.930
N4—N51.375 (4)C9—C101.453 (5)
N5—C161.347 (4)C9—H90.930
N5—H50.860C10—C111.385 (5)
N6—C161.321 (4)C10—C151.390 (5)
N6—H6A0.860C11—C121.383 (6)
N6—H6B0.860C11—H110.930
S1—C81.693 (4)C12—C131.362 (6)
S2—C161.674 (4)C12—H120.930
C1—C21.466 (5)C13—C141.362 (6)
C1—H10.930C13—H130.930
C2—C31.375 (5)C14—C151.376 (6)
C2—C71.388 (5)C14—H140.930
C3—C41.377 (6)C15—H150.930
C1—N1—N2116.5 (3)C7—C6—H6119.8
C8—N2—N1118.4 (3)C6—C7—C2120.4 (4)
C8—N2—H2120.8C6—C7—H7119.8
N1—N2—H2120.8C2—C7—H7119.8
C8—N3—H3A120.0N3—C8—N2117.6 (3)
C8—N3—H3B120.0N3—C8—S1122.5 (3)
H3A—N3—H3B120.0N2—C8—S1119.9 (3)
C9—N4—N5117.1 (3)N4—C9—C10120.4 (4)
C16—N5—N4120.0 (3)N4—C9—H9119.8
C16—N5—H5120.0C10—C9—H9119.8
N4—N5—H5120.0C11—C10—C15118.8 (4)
C16—N6—H6A120.0C11—C10—C9119.6 (4)
C16—N6—H6B120.0C15—C10—C9121.6 (3)
H6A—N6—H6B120.0C12—C11—C10120.1 (4)
N1—C1—C2120.0 (4)C12—C11—H11119.9
N1—C1—H1120.0C10—C11—H11119.9
C2—C1—H1120.0C13—C12—C11120.1 (4)
C3—C2—C7118.8 (4)C13—C12—H12119.9
C3—C2—C1121.9 (4)C11—C12—H12119.9
C7—C2—C1119.3 (4)C14—C13—C12120.5 (4)
C2—C3—C4121.0 (4)C14—C13—H13119.8
C2—C3—H3119.5C12—C13—H13119.8
C4—C3—H3119.5C13—C14—C15120.4 (5)
C3—C4—C5119.8 (5)C13—C14—H14119.8
C3—C4—H4120.1C15—C14—H14119.8
C5—C4—H4120.1C14—C15—C10120.1 (4)
C6—C5—C4119.7 (4)C14—C15—H15119.9
C6—C5—H5A120.2C10—C15—H15119.9
C4—C5—H5A120.2N6—C16—N5116.4 (3)
C5—C6—C7120.4 (4)N6—C16—S2123.6 (3)
C5—C6—H6119.8N5—C16—S2120.0 (3)
C1—N1—N2—C8−177.7 (3)N1—N2—C8—S1−173.6 (2)
C9—N4—N5—C16−176.7 (3)N5—N4—C9—C10−175.1 (3)
N2—N1—C1—C2−175.6 (3)N4—C9—C10—C11−174.2 (4)
N1—C1—C2—C3−4.5 (6)N4—C9—C10—C158.9 (6)
N1—C1—C2—C7174.5 (4)C15—C10—C11—C120.6 (6)
C7—C2—C3—C40.2 (6)C9—C10—C11—C12−176.4 (4)
C1—C2—C3—C4179.3 (4)C10—C11—C12—C130.8 (7)
C2—C3—C4—C50.0 (6)C11—C12—C13—C14−1.9 (7)
C3—C4—C5—C60.0 (6)C12—C13—C14—C151.7 (7)
C4—C5—C6—C7−0.2 (7)C13—C14—C15—C10−0.2 (7)
C5—C6—C7—C20.4 (6)C11—C10—C15—C14−0.9 (6)
C3—C2—C7—C6−0.4 (6)C9—C10—C15—C14176.0 (4)
C1—C2—C7—C6−179.5 (3)N4—N5—C16—N67.6 (5)
N1—N2—C8—N34.7 (5)N4—N5—C16—S2−172.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.643.443 (3)155
N3—H3A···S1ii0.862.983.488 (3)120
N5—H5···S1ii0.862.613.441 (3)162
N6—H6B···S2iii0.862.513.368 (3)173

Symmetry codes: (i) −x+3, −y+2, −z+2; (ii) x−1, y, z; (iii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2310).

References

  • Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem.4, 31–39. [PubMed]
  • Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem.42, 948–954. [PubMed]
  • Jing, Z.-L., Zhang, Q.-Z., Yu, M. & Chen, X. (2006). Acta Cryst. E62, o4489–o4490.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography