PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1627.
Published online 2008 November 29. doi:  10.1107/S1600536808039512
PMCID: PMC2960033

Bis(2-hydroxy­imino­methyl-6-methoxy­phenolato-κ2 O 1,N)cobalt(II)

Abstract

In the title compound, [Co(C8H8NO3)2], the CoII atom lies on a centre of inversion and is coordinated in a slightly distorted square-planar geometry by two N and two O atoms from the 2-hydroxy­imino­methyl-6-methoxy­phenolate ligands. Intra­molecular O—H(...)O hydrogen bonds are formed and the complexes form stacks along the b axis, with an inter­planar separation of 3.332 (1) Å between complexes. Pairs of C—H(...)O contacts are formed between complexes in neighbouring stacks.

Related literature

For recent related literature concerning Schiff-base compounds, see: Gupta & Sutar (2008 [triangle]); Sreenivasulu et al. (2005 [triangle]); Zhang et al. (2008 [triangle]); Raptopoulou et al. (2006 [triangle]); Milios et al. (2006 [triangle]); Yang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1627-scheme1.jpg

Experimental

Crystal data

  • [Co(C8H8NO3)2]
  • M r = 391.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1627-efi1.jpg
  • a = 8.4254 (19) Å
  • b = 4.9111 (11) Å
  • c = 18.951 (4) Å
  • β = 95.375 (3)°
  • V = 780.7 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 293 (2) K
  • 0.22 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 4577 measured reflections
  • 1433 independent reflections
  • 1216 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.065
  • S = 1.04
  • 1433 reflections
  • 117 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039512/bi2324sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039512/bi2324Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is financially supported by the Young Science Foundation of Guangxi Province of China (grant No. 0832085)

supplementary crystallographic information

Comment

Schiff-base complexes have been studied for many years (Gupta & Sutar, 2008; Sreenivasulu et al., 2005; Zhang et al., 2008) and have aroused increasing interest because of their antiviral, anticancer, catalytic and fluorescent properties. Most model studies of metal complexes of Schiff-base ligands containing salicylaldehyde derivatives and oxime have focused on the binding mode of the ligands (Raptopoulou et al., 2006; Milios et al., 2006; Yang et al., 2007). The crystal structures of the complexes demonstrate that the Schiff-base ligands act in a bidentate, tridentate or mu^5^:eta^1^:etaî^:eta^3^ mode, coordinating through the phenolato O, imine N, or oxime O atoms. Our research group is interested in the Schiff-base derived from 2-hydroxy-3-methoxy-benzaldehyde and hydroxylammonium chloride.

Experimental

A solution of (0.152 g, 1.0 mmol) 2-hydroxy-3-methoxy-benzaldehyde oxime and (0.056 g, 1 mmol) potassium hydroxide in 20 ml absolute methanol was added slowly to a solution of CoNO3.6H2O (0.145 g, 0.5 mmol) in methanol. The mixture was stirred for 1 h at room temperature to give a red solution which was filtered and the filtrate was left to stand at room temperature. Red block crystals suitable for were obtained by slow evaporation Yield: 80.1 % (based on Co). Elemental analysis calculated: C 49.12, H 4.12, N 7.16 %; found: C 48.99, H 4.21, N 7.22 %.

Refinement

H atoms were positioned geometrically and refined with a riding model, with distances 0.96 (CH3) or 0.93 Å (aromatic ring), and with Uiso(H) = 1.2 Ueq(aromatic ring) or Uiso(H) = 1.5 Ueq(CH3), and with O–H distance 0.82 Å and Uiso(H) = 1.5 Ueq(O).

Figures

Fig. 1.
Molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. Dashed lines denote O—H···O hydrogen bonds. Symmetry code (A): -x, 1 - y, -z.
Fig. 2.
Packing diagram viewed down the b axis. Dasehd lines denote C—H···O contacts.

Crystal data

[Co(C8H8NO3)2]F000 = 402
Mr = 391.24Dx = 1.664 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4577 reflections
a = 8.4254 (19) Åθ = 2.6–25.5º
b = 4.9111 (11) ŵ = 1.14 mm1
c = 18.951 (4) ÅT = 293 (2) K
β = 95.375 (3)ºBlock, red
V = 780.7 (3) Å30.22 × 0.18 × 0.14 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1216 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Monochromator: graphiteθmax = 25.5º
T = 293(2) Kθmin = 2.6º
[var phi] and ω scansh = −10→10
Absorption correction: nonek = −5→5
4577 measured reflectionsl = −22→22
1433 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.065  w = 1/[σ2(Fo2) + (0.0303P)2 + 0.2885P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1433 reflectionsΔρmax = 0.23 e Å3
117 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.00000.50000.00000.03262 (15)
C10.1093 (2)0.0793 (4)0.09770 (10)0.0353 (4)
C20.0701 (2)−0.1107 (4)0.14960 (10)0.0377 (5)
C30.1851 (3)−0.2781 (4)0.18262 (11)0.0448 (5)
H30.1581−0.40280.21640.054*
C40.3423 (3)−0.2610 (4)0.16538 (11)0.0477 (6)
H40.4196−0.37440.18800.057*
C50.3837 (3)−0.0794 (4)0.11564 (11)0.0429 (5)
H50.4889−0.06960.10480.052*
C60.2676 (2)0.0939 (4)0.08055 (10)0.0361 (4)
C70.3153 (2)0.2796 (4)0.02809 (10)0.0386 (5)
H70.42170.27990.01870.046*
C8−0.1391 (3)−0.3153 (5)0.20761 (12)0.0535 (6)
H8A−0.1090−0.48970.19020.080*
H8B−0.2529−0.30740.20770.080*
H8C−0.0903−0.28980.25500.080*
N10.21926 (19)0.4465 (3)−0.00691 (8)0.0363 (4)
O1−0.00708 (15)0.2354 (3)0.06754 (7)0.0387 (3)
O20.29495 (16)0.6086 (3)−0.05443 (8)0.0487 (4)
H20.23010.7143−0.07440.073*
O3−0.08737 (17)−0.1063 (3)0.16291 (8)0.0494 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0291 (2)0.0337 (2)0.0348 (2)−0.00160 (15)0.00146 (15)0.00203 (16)
C10.0385 (11)0.0311 (10)0.0354 (11)0.0001 (8)−0.0005 (9)−0.0038 (8)
C20.0415 (11)0.0352 (10)0.0362 (11)−0.0016 (9)0.0025 (9)−0.0015 (9)
C30.0566 (14)0.0375 (11)0.0392 (11)−0.0009 (10)−0.0007 (10)0.0040 (9)
C40.0503 (13)0.0425 (12)0.0478 (13)0.0103 (10)−0.0080 (10)−0.0001 (10)
C50.0384 (11)0.0455 (12)0.0436 (12)0.0057 (9)−0.0030 (9)−0.0045 (10)
C60.0360 (10)0.0350 (10)0.0364 (11)−0.0010 (8)−0.0017 (8)−0.0043 (8)
C70.0286 (10)0.0438 (11)0.0429 (11)0.0001 (9)0.0016 (8)−0.0041 (9)
C80.0591 (14)0.0510 (14)0.0524 (13)−0.0079 (11)0.0160 (11)0.0078 (11)
N10.0327 (9)0.0410 (10)0.0352 (9)−0.0053 (7)0.0040 (7)0.0019 (7)
O10.0332 (7)0.0397 (8)0.0434 (8)0.0005 (6)0.0044 (6)0.0083 (6)
O20.0346 (8)0.0598 (10)0.0523 (9)−0.0032 (7)0.0070 (7)0.0185 (8)
O30.0452 (9)0.0493 (8)0.0547 (9)−0.0010 (7)0.0105 (7)0.0153 (8)

Geometric parameters (Å, °)

Co1—O11.8290 (13)C4—H40.930
Co1—O1i1.8290 (13)C5—C61.414 (3)
Co1—N11.8826 (17)C5—H50.930
Co1—N1i1.8826 (17)C6—C71.434 (3)
C1—O11.331 (2)C7—N11.290 (2)
C1—C61.404 (3)C7—H70.930
C1—C21.417 (3)C8—O31.425 (2)
C2—O31.374 (2)C8—H8A0.960
C2—C31.376 (3)C8—H8B0.960
C3—C41.396 (3)C8—H8C0.960
C3—H30.930N1—O21.400 (2)
C4—C51.367 (3)O2—H20.820
O1—Co1—O1i180.00 (8)C6—C5—H5119.8
O1—Co1—N192.64 (6)C1—C6—C5119.37 (19)
O1i—Co1—N187.36 (6)C1—C6—C7121.78 (18)
O1—Co1—N1i87.36 (6)C5—C6—C7118.86 (18)
O1i—Co1—N1i92.64 (6)N1—C7—C6123.89 (18)
N1—Co1—N1i180.00 (13)N1—C7—H7118.1
O1—C1—C6123.29 (18)C6—C7—H7118.1
O1—C1—C2117.87 (18)O3—C8—H8A109.5
C6—C1—C2118.84 (17)O3—C8—H8B109.5
O3—C2—C3125.24 (19)H8A—C8—H8B109.5
O3—C2—C1114.13 (17)O3—C8—H8C109.5
C3—C2—C1120.62 (19)H8A—C8—H8C109.5
C2—C3—C4120.0 (2)H8B—C8—H8C109.5
C2—C3—H3120.0C7—N1—O2112.97 (16)
C4—C3—H3120.0C7—N1—Co1128.68 (14)
C5—C4—C3120.65 (19)O2—N1—Co1118.33 (12)
C5—C4—H4119.7C1—O1—Co1129.71 (13)
C3—C4—H4119.7N1—O2—H2109.5
C4—C5—C6120.5 (2)C2—O3—C8116.90 (17)
C4—C5—H5119.8

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.912.5336 (19)132
C7—H7···O2ii0.932.483.321 (2)150

Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2324).

References

  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev.252, 1420–1450.
  • Milios, C. J., Vinslava, A., Whittaker, A. G., Parsons, S., Wernsdorfer, W., Christou, G., Perlepes, S. P. & Brechin, E. K. (2006). Inorg. Chem.45, 5272–5274. [PubMed]
  • Raptopoulou, C. P., Boudalis, A. K., Sanakis, Y., Psycharis, V., Clemente-Juan, J. M., Fardis, M., Diamantopoulos, G. & Papavassiliou, G. (2006). Inorg. Chem.45, 2317–2326. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.
  • Yang, C. I., Wernsdorfer, W., Lee, G. H. & Tsai, H. L. (2007). J. Am. Chem. Soc.129, 456–457. [PubMed]
  • Zhang, S. H., Jiang, Y. M. & Liu, Z. M. (2008). J. Coord. Chem.61, 1927–1934.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography