PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2487.
Published online 2008 November 29. doi:  10.1107/S1600536808039755
PMCID: PMC2960030

N′-[(E)-1-(5-Bromo-2-hydroxy­phen­yl)ethyl­idene]benzohydrazide

Abstract

The C=N double bond in the title compound, C15H13BrN2O2, is trans E configured and the dihedral angle between the aromatic ring planes is 22.3 (1)°. The crystal structure is stabilized by intra­molecular O—H(...)O and inter­molecular N—H(...)O hydrogen bonds.

Related literature

For aroylhydrazones and their biological activity, see: Singh et al. (1982 [triangle]); Salem (1998 [triangle]); Carcelli et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2487-scheme1.jpg

Experimental

Crystal data

  • C15H13BrN2O2
  • M r = 333.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2487-efi1.jpg
  • a = 7.3761 (15) Å
  • b = 28.270 (6) Å
  • c = 8.6089 (13) Å
  • β = 116.928 (12)°
  • V = 1600.5 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.57 mm−1
  • T = 298 (2) K
  • 0.12 × 0.08 × 0.06 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.748, T max = 0.861
  • 8028 measured reflections
  • 2830 independent reflections
  • 1490 reflections with I > 2σ(I)
  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.188
  • S = 1.01
  • 2830 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039755/bt2814sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039755/bt2814Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Postgraduate Foundation of Xi’an Polytechnic University (grant No. Y05–2–09)

supplementary crystallographic information

Comment

The chemistry of aroylhydrazones continues to attract much attention due to their coordination ability to metal ions (Singh et al., 1982; Salem, 1998) and their biological activity (Singh et al., 1982; Carcelli et al., 1995). As an extension of work on the structural characterization of aroylhydrazone derivatives, the title compound was synthesized and its crystal structure is reported here.

The title molecule displays a trans configured C=N double bond (Fig. 1). The crystal structure is stabilized by intramolecular O—H···O and intermolecular N—H···O hydrogen bonds (Table 1. and Fig. 2).

Experimental

Benzoylhydrazine (0.02 mol, 2.72 g) was dissolved in anhydrous ethanol (50 ml), and 1-(5-bromo-2-hydroxyphenyl)ethanone (0.02 mol, 4.30 g) was added. The reaction mixture was refluxed for 6 h with stirring, then the resulting precipitate was collected by filtration, washed several times with ethanol and dried in vacuo (yield 85%). The compound (2.0 mmol, 0.67 g) was dissolved in dimethylformamide (30 ml) and kept at room temperature for 30 d to obtain yellow single crystals suitable for X-ray diffraction.

Refinement

All H atoms were positioned geometrically and treated as riding on their parent atoms,with CH(methyl) = 0.96 Å, C—H(aromatic) = 0.93 Å, O—H = 0.82 Å, and N—H = 0.86 Å and with Uiso(H) =1.5Ueq(Cmethyl,O) and 1.2Ueq(Caromatic,N).

Figures

Fig. 1.
The molecular structure the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound. Dashed lines show hydrogen bonds.

Crystal data

C15H13BrN2O2F000 = 672
Mr = 333.18Dx = 1.383 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1189 reflections
a = 7.3761 (15) Åθ = 2.9–20.7º
b = 28.270 (6) ŵ = 2.57 mm1
c = 8.6089 (13) ÅT = 298 (2) K
β = 116.928 (12)ºBlock, yellow
V = 1600.5 (5) Å30.12 × 0.08 × 0.06 mm
Z = 4

Data collection

Siemens SMART CCD area-detector diffractometer2830 independent reflections
Radiation source: fine-focus sealed tube1490 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.062
T = 298(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 3.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.748, Tmax = 0.861k = −33→33
8028 measured reflectionsl = −7→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.188  w = 1/[σ2(Fo2) + (0.089P)2 + 0.7896P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
2830 reflectionsΔρmax = 0.87 e Å3
183 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.81952 (14)1.00196 (2)0.69361 (11)0.0935 (4)
O10.6647 (7)0.79484 (14)0.7321 (5)0.0613 (11)
H10.61830.78200.63650.092*
O20.3297 (6)0.70963 (13)0.4419 (5)0.0602 (11)
N10.4384 (6)0.79657 (14)0.4079 (5)0.0391 (10)
N20.3180 (6)0.76994 (15)0.2660 (5)0.0416 (10)
H20.27200.78100.16200.050*
C10.6935 (8)0.84139 (19)0.7143 (6)0.0442 (13)
C20.6016 (8)0.86503 (17)0.5556 (6)0.0390 (12)
C30.6426 (8)0.91292 (19)0.5540 (7)0.0497 (14)
H30.58290.92940.44910.060*
C40.7677 (8)0.9363 (2)0.7018 (8)0.0555 (15)
C50.8592 (10)0.9132 (2)0.8592 (8)0.0655 (17)
H50.94610.92930.95980.079*
C60.8202 (9)0.8661 (2)0.8654 (8)0.0658 (18)
H60.87890.85030.97160.079*
C70.4633 (7)0.84066 (17)0.3902 (6)0.0370 (12)
C80.2737 (8)0.72504 (18)0.2962 (7)0.0430 (13)
C90.1524 (8)0.69622 (19)0.1385 (7)0.0460 (13)
C100.0099 (8)0.7153 (2)−0.0181 (7)0.0509 (14)
H10−0.01320.7477−0.02730.061*
C11−0.0978 (9)0.6865 (2)−0.1603 (8)0.0581 (16)
H11−0.19310.6994−0.26490.070*
C12−0.0621 (10)0.6383 (2)−0.1449 (9)0.0641 (17)
H12−0.13350.6186−0.24000.077*
C130.0790 (11)0.6191 (2)0.0110 (9)0.0618 (16)
H130.10270.58660.02000.074*
C140.1832 (9)0.64743 (19)0.1507 (7)0.0496 (14)
H140.27600.63420.25570.060*
C150.3682 (9)0.86765 (19)0.2249 (6)0.0535 (15)
H15A0.46730.87330.18360.080*
H15B0.31860.89730.24450.080*
H15C0.25710.84980.13950.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1011 (7)0.0462 (5)0.0962 (7)−0.0133 (4)0.0123 (5)−0.0172 (4)
O10.073 (3)0.058 (3)0.040 (2)−0.003 (2)0.014 (2)0.0092 (19)
O20.103 (3)0.040 (2)0.041 (2)0.000 (2)0.037 (2)0.0038 (17)
N10.051 (3)0.036 (3)0.029 (2)0.002 (2)0.0173 (19)−0.0012 (19)
N20.054 (3)0.037 (3)0.032 (2)−0.006 (2)0.019 (2)−0.0022 (19)
C10.043 (3)0.045 (3)0.037 (3)−0.003 (2)0.011 (2)0.004 (2)
C20.034 (3)0.039 (3)0.044 (3)0.002 (2)0.017 (2)−0.005 (2)
C30.047 (3)0.049 (3)0.040 (3)0.008 (3)0.009 (3)−0.005 (3)
C40.047 (3)0.048 (4)0.062 (4)0.001 (3)0.015 (3)−0.014 (3)
C50.064 (4)0.067 (4)0.051 (4)−0.005 (3)0.013 (3)−0.020 (3)
C60.062 (4)0.079 (5)0.040 (3)0.002 (3)0.008 (3)−0.003 (3)
C70.044 (3)0.037 (3)0.028 (3)0.004 (2)0.014 (2)−0.001 (2)
C80.064 (4)0.032 (3)0.041 (3)0.006 (3)0.031 (3)0.000 (2)
C90.057 (3)0.043 (3)0.049 (3)−0.009 (3)0.033 (3)−0.004 (3)
C100.057 (3)0.040 (3)0.053 (4)−0.006 (3)0.022 (3)0.004 (3)
C110.058 (4)0.052 (4)0.055 (4)−0.013 (3)0.017 (3)−0.006 (3)
C120.070 (4)0.062 (4)0.064 (4)−0.024 (3)0.034 (4)−0.027 (3)
C130.082 (4)0.041 (3)0.079 (5)−0.009 (3)0.050 (4)−0.011 (3)
C140.066 (4)0.036 (3)0.053 (3)−0.004 (3)0.033 (3)−0.003 (3)
C150.071 (4)0.036 (3)0.034 (3)0.001 (3)0.006 (3)0.002 (2)

Geometric parameters (Å, °)

Br1—C41.902 (6)C6—H60.9300
O1—C11.353 (6)C7—C151.482 (7)
O1—H10.8200C8—C91.485 (7)
O2—C81.210 (6)C9—C101.389 (7)
N1—C71.279 (6)C9—C141.394 (7)
N1—N21.366 (5)C10—C111.382 (7)
N2—C81.365 (6)C10—H100.9300
N2—H20.8600C11—C121.384 (8)
C1—C21.391 (7)C11—H110.9300
C1—C61.397 (8)C12—C131.383 (9)
C2—C31.389 (7)C12—H120.9300
C2—C71.492 (7)C13—C141.358 (8)
C3—C41.358 (7)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.376 (8)C15—H15A0.9600
C5—C61.367 (9)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C1—O1—H1109.5O2—C8—C9122.1 (5)
C7—N1—N2120.1 (4)N2—C8—C9115.7 (4)
C8—N2—N1117.2 (4)C10—C9—C14118.9 (5)
C8—N2—H2121.4C10—C9—C8123.5 (5)
N1—N2—H2121.4C14—C9—C8117.6 (5)
O1—C1—C2123.2 (4)C11—C10—C9120.7 (6)
O1—C1—C6117.0 (5)C11—C10—H10119.6
C2—C1—C6119.8 (5)C9—C10—H10119.6
C3—C2—C1117.8 (5)C10—C11—C12119.1 (6)
C3—C2—C7119.9 (4)C10—C11—H11120.4
C1—C2—C7122.3 (5)C12—C11—H11120.4
C4—C3—C2121.6 (5)C13—C12—C11120.4 (5)
C4—C3—H3119.2C13—C12—H12119.8
C2—C3—H3119.2C11—C12—H12119.8
C3—C4—C5120.9 (6)C14—C13—C12120.2 (6)
C3—C4—Br1120.2 (5)C14—C13—H13119.9
C5—C4—Br1118.9 (4)C12—C13—H13119.9
C6—C5—C4118.9 (6)C13—C14—C9120.7 (6)
C6—C5—H5120.6C13—C14—H14119.7
C4—C5—H5120.6C9—C14—H14119.7
C5—C6—C1121.0 (6)C7—C15—H15A109.5
C5—C6—H6119.5C7—C15—H15B109.5
C1—C6—H6119.5H15A—C15—H15B109.5
N1—C7—C15125.8 (4)C7—C15—H15C109.5
N1—C7—C2114.2 (4)H15A—C15—H15C109.5
C15—C7—C2120.0 (5)H15B—C15—H15C109.5
O2—C8—N2122.2 (5)
C7—N1—N2—C8−170.7 (5)C1—C2—C7—N1−0.3 (7)
O1—C1—C2—C3179.8 (5)C3—C2—C7—C15−0.6 (7)
C6—C1—C2—C30.8 (8)C1—C2—C7—C15179.6 (5)
O1—C1—C2—C7−0.4 (8)N1—N2—C8—O23.3 (7)
C6—C1—C2—C7−179.4 (5)N1—N2—C8—C9−176.6 (4)
C1—C2—C3—C4−0.2 (8)O2—C8—C9—C10149.0 (5)
C7—C2—C3—C4−180.0 (5)N2—C8—C9—C10−31.1 (7)
C2—C3—C4—C50.2 (9)O2—C8—C9—C14−30.3 (8)
C2—C3—C4—Br1−180.0 (4)N2—C8—C9—C14149.6 (5)
C3—C4—C5—C6−0.8 (9)C14—C9—C10—C11−0.8 (8)
Br1—C4—C5—C6179.3 (5)C8—C9—C10—C11179.9 (5)
C4—C5—C6—C11.5 (10)C9—C10—C11—C120.0 (8)
O1—C1—C6—C5179.4 (6)C10—C11—C12—C130.3 (9)
C2—C1—C6—C5−1.5 (9)C11—C12—C13—C140.3 (9)
N2—N1—C7—C151.2 (8)C12—C13—C14—C9−1.2 (9)
N2—N1—C7—C2−178.9 (4)C10—C9—C14—C131.4 (8)
C3—C2—C7—N1179.5 (5)C8—C9—C14—C13−179.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.522 (6)138
N2—H2···O2i0.862.142.889 (6)146

Symmetry codes: (i) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2814).

References

  • Carcelli, M., Mazza, P., Pelizzi, G. & Zani, F. (1995). J. Inorg. Biochem.57, 43–62. [PubMed]
  • Salem, A. A. (1998). Microchem. J.60, 51–66.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Singh, R. B., Jain, P. & Singh, R. P. (1982). Talanta, 29, 77–84. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography