PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2297.
Published online 2008 November 8. doi:  10.1107/S1600536808036179
PMCID: PMC2960026

N-(2,4-Dinitro­phen­yl)-N′-[nitro­(phenyl)­methyl­ene]hydrazine

Abstract

The title compound, C13H9N5O6, contains three nitro groups. It is prepared by the reaction of benzaldehyde 2,4-dinitro­phenyl­hydrazone with nitric oxide at ambient temperature. The imine group is nearly coplanar with the (2,4-dinitro­phen­yl)­hydrazine unit. The second benzene ring and the third nitro group are twisted away from this plane, with dihedral angles of 48.5 (3) and 15.2 (3)°, respectively. Weak intra­molecular N—H(...)O inter­actions are observed.

Related literature

For related literature regarding NO, see: Garthwaite et al. (1989 [triangle]); Murad (1999 [triangle]). For aryl­hydrazones, see: Chan et al. (2001 [triangle]); Försterling & Barnes (2001 [triangle]); Paschalidis et al. (2000 [triangle]). For the structure of benzaldehyde 2,4-dinitro­phenyl­hydrazone, see Shan et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2297-scheme1.jpg

Experimental

Crystal data

  • C13H9N5O6
  • M r = 331.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2297-efi1.jpg
  • a = 6.9790 (1) Å
  • b = 13.469 (2) Å
  • c = 29.448 (8) Å
  • V = 2768.1 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 289 (2) K
  • 0.52 × 0.48 × 0.22 mm

Data collection

  • Siemens P4 diffractometer
  • Absorption correction: none
  • 3591 measured reflections
  • 3018 independent reflections
  • 1537 reflections with I > 2σ(I)
  • R int = 0.0000
  • 3 standard reflections every 97 reflections intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.059
  • S = 0.98
  • 3018 reflections
  • 222 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808036179/ez2141sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036179/ez2141Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

I am grateful for financial support from Foster Industrial Projects (grant No. 06JC25) of Shaanxi Province and the main project (grant No. 04JS37) of the Key Laboratory of Shaanxi Province, People’s Republic of China.

supplementary crystallographic information

Comment

Nitric oxide (NO) has been found recently to play an important role in chemistry, biology and medicine (Garthwaite et al., 1989; Murad, 1999). In recent years, arylhydrazones have been utilized for the analysis of carbonyl compounds (Chan et al., 2001). Some arylhydrazones and their nitration products were found to have pharmacological properties (Försterling & Barnes, 2001; Paschalidis et al., 2000). Here we report the reaction of NO with an arylhydrazone, where the title compound, (I), was obtained by the reaction of NO with benzaldehyde-2,4-dinitrophenylhydrazone.

The structure of (I) (Fig.1), shows that this reaction resulted in the addition of a third NO2 group, which is attached to the carbon atom C7, with an O1—N3—C7—C6 torsion angle of -11.6 (3)°. The imine double bond in benzaldehyde 2,4-dinitrophenylhydrazone was preserved, as indicated by the N1═C7 distance [1.2779 (19) Å] being similar to that of 1.275 (2)Å in the original compound (Shan et al., 2003). The other two nitro groups are co-planar with the benzene ring that they are attached to, with O4—N4—C12—C13 and O5—N5—C11—C12 torsion angles of 7.0 (3) and 0.0 (3)° respectively. There is a weak intramolecular N2—H(2 N)···O2 interaction.

Experimental

A stock solution was prepared by dissolving 0.5 mol benzaldehyde -2,4-dinitrophenylhydrazine in 100 ml dry CH2Cl2. NO was produced by the reaction of 1 M H2SO4 solution trickled into an aqueous saturated NaNO2 solution through a funnel at a pre-determined speed, while stirring under an argon atmosphere. NO was carried by argon and purified by passing it through a series of scrubbing bottles containing 4M NaOH, distilled water and CaCl2 in turn. All the above bottles were under an argon atmosphere. The purified NO was bubbled through a previously degassed stirred stock solution at room temperature for an appropriate time. After the reaction was completed, as indicated by TLC, the reaction mixture was dried with anhydrous MgSO4, concentrated under vacuum and purified by column chromatography on silica–gel (200–300 mesh, ethyl acetate–hexane) yielding the pure title compound.

Refinement

Atom H2N was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.89 Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93Å and with Uiso(H)= 1.2Ueq(C,N).

Figures

Fig. 1.
The structure of the dimer formation in (I),showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are not shown.
Fig. 2.
The crystal packing of (I), viewed along the b axis.

Crystal data

C13H9N5O6Dx = 1.590 Mg m3
Mr = 331.25Mo Kα radiation λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 26 reflections
a = 6.9790 (1) Åθ = 3.4–12.5º
b = 13.469 (2) ŵ = 0.13 mm1
c = 29.448 (8) ÅT = 289 (2) K
V = 2768.1 (9) Å3Prism, yellow
Z = 80.52 × 0.48 × 0.22 mm
F000 = 1360

Data collection

Siemens P4 diffractometerRint = 0.0000
Radiation source: normal-focus sealed tubeθmax = 27.0º
Monochromator: graphiteθmin = 1.4º
T = 289(2) Kh = 0→8
ω scansk = 0→17
Absorption correction: nonel = 0→37
3591 measured reflections3 standard reflections
3018 independent reflections every 97 reflections
1537 reflections with I > 2σ(I) intensity decay: 1.0%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039  w = 1/[σ2(Fo2) + (0.0116P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 0.98Δρmax = 0.20 e Å3
3018 reflectionsΔρmin = −0.14 e Å3
222 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00375 (18)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.2792 (2)0.72703 (10)0.26225 (4)0.0655 (5)
O20.4128 (2)0.58358 (10)0.27056 (4)0.0696 (5)
O30.5250 (2)0.37214 (9)0.30832 (4)0.0587 (4)
O40.5513 (2)0.23410 (9)0.34501 (4)0.0668 (5)
O50.7770 (3)0.22039 (11)0.49622 (4)0.0826 (6)
O60.8082 (2)0.35414 (10)0.53534 (4)0.0827 (6)
N10.5194 (2)0.63895 (10)0.35787 (5)0.0411 (4)
N20.5362 (2)0.54088 (11)0.35121 (5)0.0423 (4)
N30.3764 (3)0.66797 (13)0.28337 (5)0.0489 (5)
N40.5574 (2)0.32486 (12)0.34320 (5)0.0463 (4)
N50.7673 (3)0.31066 (14)0.50021 (5)0.0599 (5)
C10.3799 (3)0.82777 (13)0.38520 (6)0.0409 (5)
H10.34590.77700.40500.049*
C20.3749 (3)0.92498 (14)0.39969 (6)0.0459 (5)
H20.33720.93940.42930.055*
C30.4251 (3)1.00085 (14)0.37089 (6)0.0490 (6)
H30.42231.06630.38100.059*
C40.4797 (3)0.97942 (14)0.32689 (6)0.0509 (6)
H40.51371.03070.30730.061*
C50.4842 (3)0.88204 (14)0.31166 (6)0.0449 (5)
H50.51950.86820.28190.054*
C60.4359 (3)0.80519 (13)0.34096 (6)0.0368 (5)
C70.4514 (3)0.69945 (13)0.32858 (6)0.0387 (5)
C80.5928 (3)0.48344 (13)0.38722 (6)0.0376 (5)
C90.6383 (3)0.52778 (13)0.42912 (6)0.0433 (5)
H90.62950.59640.43220.052*
C100.6953 (3)0.47186 (14)0.46549 (6)0.0453 (5)
H100.72710.50230.49280.054*
C110.7052 (3)0.37003 (14)0.46136 (6)0.0424 (5)
C120.6595 (3)0.32304 (13)0.42157 (6)0.0422 (5)
H120.66540.25420.41940.051*
C130.6048 (3)0.37961 (13)0.38483 (6)0.0376 (5)
H2N0.508 (2)0.5131 (11)0.3244 (5)0.045 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0715 (11)0.0759 (10)0.0491 (9)0.0080 (10)−0.0181 (8)−0.0017 (8)
O20.1089 (14)0.0566 (9)0.0433 (8)0.0080 (10)−0.0062 (9)−0.0146 (7)
O30.0786 (12)0.0550 (9)0.0426 (8)−0.0004 (9)−0.0118 (8)−0.0065 (7)
O40.0932 (13)0.0360 (8)0.0711 (10)0.0018 (9)−0.0160 (9)−0.0131 (7)
O50.1295 (16)0.0517 (10)0.0666 (10)0.0200 (12)−0.0158 (11)0.0040 (9)
O60.1324 (17)0.0721 (11)0.0437 (8)0.0087 (11)−0.0200 (10)−0.0044 (8)
N10.0411 (11)0.0381 (9)0.0443 (9)0.0011 (9)0.0036 (8)0.0007 (8)
N20.0489 (12)0.0416 (10)0.0365 (10)−0.0013 (9)−0.0036 (9)−0.0058 (8)
N30.0519 (13)0.0583 (12)0.0366 (10)−0.0064 (11)0.0015 (9)0.0009 (9)
N40.0429 (12)0.0467 (11)0.0492 (10)0.0015 (9)−0.0012 (10)−0.0086 (9)
N50.0738 (15)0.0586 (13)0.0471 (11)0.0100 (12)−0.0023 (11)0.0012 (10)
C10.0408 (13)0.0460 (12)0.0358 (11)0.0008 (11)−0.0005 (10)0.0064 (9)
C20.0467 (13)0.0548 (13)0.0362 (11)0.0046 (12)0.0001 (10)−0.0056 (10)
C30.0483 (14)0.0410 (12)0.0577 (13)0.0047 (11)−0.0079 (12)−0.0038 (11)
C40.0557 (15)0.0493 (13)0.0478 (12)−0.0006 (12)−0.0034 (12)0.0138 (10)
C50.0477 (14)0.0556 (13)0.0315 (10)0.0000 (11)−0.0016 (10)0.0050 (10)
C60.0350 (12)0.0441 (11)0.0312 (10)0.0009 (10)−0.0025 (9)0.0009 (9)
C70.0397 (13)0.0449 (12)0.0314 (10)−0.0033 (11)0.0025 (10)−0.0002 (9)
C80.0357 (12)0.0393 (11)0.0377 (11)−0.0021 (10)0.0033 (10)0.0007 (9)
C90.0518 (14)0.0379 (11)0.0404 (11)0.0013 (11)0.0042 (10)−0.0063 (9)
C100.0509 (15)0.0497 (12)0.0352 (11)0.0000 (12)0.0022 (10)−0.0045 (10)
C110.0462 (14)0.0458 (12)0.0352 (10)0.0029 (12)0.0016 (10)0.0022 (10)
C120.0402 (12)0.0377 (11)0.0488 (12)0.0020 (10)0.0046 (10)−0.0015 (10)
C130.0362 (12)0.0398 (11)0.0367 (10)−0.0014 (10)0.0006 (10)−0.0080 (9)

Geometric parameters (Å, °)

O1—N31.2163 (17)C2—H20.9300
O2—N31.2244 (17)C3—C41.381 (2)
O3—N41.2296 (17)C3—H30.9300
O4—N41.2244 (17)C4—C51.386 (2)
O5—N51.2233 (17)C4—H40.9300
O6—N51.2227 (18)C5—C61.389 (2)
N1—C71.2779 (19)C5—H50.9300
N1—N21.3405 (18)C6—C71.474 (2)
N2—C81.371 (2)C8—C131.403 (2)
N2—H2N0.894 (15)C8—C91.407 (2)
N3—C71.492 (2)C9—C101.368 (2)
N4—C131.468 (2)C9—H90.9300
N5—C111.462 (2)C10—C111.379 (2)
C1—C21.378 (2)C10—H100.9300
C1—C61.394 (2)C11—C121.369 (2)
C1—H10.9300C12—C131.377 (2)
C2—C31.373 (2)C12—H120.9300
C7—N1—N2124.20 (15)C4—C5—H5120.0
N1—N2—C8117.91 (15)C6—C5—H5120.0
N1—N2—H2N121.5 (10)C5—C6—C1119.08 (16)
C8—N2—H2N120.6 (10)C5—C6—C7123.26 (16)
O1—N3—O2124.43 (17)C1—C6—C7117.56 (16)
O1—N3—C7117.78 (16)N1—C7—C6118.45 (16)
O2—N3—C7117.76 (17)N1—C7—N3123.46 (16)
O4—N4—O3123.17 (16)C6—C7—N3117.99 (16)
O4—N4—C13118.22 (16)N2—C8—C13122.75 (17)
O3—N4—C13118.61 (15)N2—C8—C9120.25 (16)
O6—N5—O5122.99 (18)C13—C8—C9116.98 (17)
O6—N5—C11118.00 (17)C10—C9—C8121.21 (17)
O5—N5—C11119.01 (17)C10—C9—H9119.4
C2—C1—C6120.27 (17)C8—C9—H9119.4
C2—C1—H1119.9C9—C10—C11119.55 (17)
C6—C1—H1119.9C9—C10—H10120.2
C3—C2—C1120.63 (17)C11—C10—H10120.2
C3—C2—H2119.7C12—C11—C10121.58 (18)
C1—C2—H2119.7C12—C11—N5119.07 (17)
C2—C3—C4119.61 (17)C10—C11—N5119.35 (17)
C2—C3—H3120.2C11—C12—C13118.75 (17)
C4—C3—H3120.2C11—C12—H12120.6
C3—C4—C5120.49 (18)C13—C12—H12120.6
C3—C4—H4119.8C12—C13—C8121.91 (17)
C5—C4—H4119.8C12—C13—N4116.14 (16)
C4—C5—C6119.90 (17)C8—C13—N4121.95 (17)
C7—N1—N2—C8−173.30 (18)N2—C8—C9—C10−179.95 (17)
C6—C1—C2—C3−0.1 (3)C13—C8—C9—C101.3 (3)
C1—C2—C3—C40.5 (3)C8—C9—C10—C11−1.2 (3)
C2—C3—C4—C50.0 (3)C9—C10—C11—C120.1 (3)
C3—C4—C5—C6−0.8 (3)C9—C10—C11—N5179.60 (17)
C4—C5—C6—C11.2 (3)O6—N5—C11—C12179.67 (19)
C4—C5—C6—C7−175.08 (19)O5—N5—C11—C120.0 (3)
C2—C1—C6—C5−0.7 (3)O6—N5—C11—C100.2 (3)
C2—C1—C6—C7175.76 (18)O5—N5—C11—C10−179.5 (2)
N2—N1—C7—C6178.19 (17)C10—C11—C12—C130.8 (3)
N2—N1—C7—N31.8 (3)N5—C11—C12—C13−178.71 (17)
C5—C6—C7—N1137.61 (19)C11—C12—C13—C8−0.6 (3)
C1—C6—C7—N1−38.7 (3)C11—C12—C13—N4−179.89 (16)
C5—C6—C7—N3−45.8 (3)N2—C8—C13—C12−179.11 (17)
C1—C6—C7—N3137.86 (16)C9—C8—C13—C12−0.4 (3)
O1—N3—C7—N1164.76 (18)N2—C8—C13—N40.1 (3)
O2—N3—C7—N1−13.5 (3)C9—C8—C13—N4178.85 (16)
O1—N3—C7—C6−11.6 (3)O4—N4—C13—C127.0 (3)
O2—N3—C7—C6170.13 (18)O3—N4—C13—C12−173.35 (17)
N1—N2—C8—C13176.35 (17)O4—N4—C13—C8−172.31 (18)
N1—N2—C8—C9−2.3 (3)O3—N4—C13—C87.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O20.894 (15)1.966 (15)2.591 (2)125.7 (13)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2141).

References

  • Chan, W. H., Shuang, S. & Choi, M. M. F. (2001). Analyst, 126, 720–723. [PubMed]
  • Försterling, F. H. & Barnes, C. E. (2001). J. Organomet. Chem.617, 561–570.
  • Garthwaite, J., Garthwaite, G., Palmer, R. M. & Moncada, S. (1989). Eur. J. Pharmacol.172, 413–417. [PubMed]
  • Murad, F. (1999). Angew. Chem. Int. Ed.38, 1857–1868.
  • Paschalidis, D. G., Tossidis, I. A. & Gdaniec, M. (2000). Polyhedron, 19, 2629–2637.
  • Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography