PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2343.
Published online 2008 November 13. doi:  10.1107/S1600536808036969
PMCID: PMC2960025

Tetra­ethyl­ammonium l-tartarate dihydrate

Abstract

In the crystal structure of the title compound, C8H20N+·C4H5O6 ·2H2O, the ions and water mol­ecules are linked via O—H(...)O and C—H(...)O hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related structures, see: Allen et al. (2006 [triangle]); Jiang et al. (2008 [triangle]); Mei et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2343-scheme1.jpg

Experimental

Crystal data

  • C8H20N+·C4H5O6 ·2H2O
  • M r = 315.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2343-efi1.jpg
  • a = 7.4074 (1) Å
  • b = 13.8989 (2) Å
  • c = 8.0546 (1) Å
  • β = 106.553 (1)°
  • V = 794.89 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 100.0 (1) K
  • 0.47 × 0.45 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.861, T max = 0.981
  • 10518 measured reflections
  • 3579 independent reflections
  • 3240 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.092
  • S = 1.05
  • 3579 reflections
  • 218 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036969/ci2709sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036969/ci2709Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MBAR, KJ and KS thank the Ministry of Higher Education of Malaysia for the research grant 05-10-07-377FR (Fundamental Research Grant Scheme-FRGS). HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund (grant No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for the award of a post-doctoral research fellowship.

supplementary crystallographic information

Comment

The crystal structures of chiral complexes of the plant acid (L-tartaric acid) with tetraethylammonium have been investigated in our laboratory in order to understand the nature of intramolecular and intermolecular interactions. The title compound was obtained by neutralization method at room temperature. Some other related compounds containing the same cation have been previously reported (Jiang et al., 2008; Allen et al., 2006). The crystal structure of bis(tetraethylammonium) tartrate bis(thiourea) dihydrate has also been reported (Mei et al., 2002).

The asymmetric unit of the title compound (Fig. 1) contains a tartarate anion, a tetraethylammonium cation and two water molecules of crystallization. Two intermolecular C—H···O hydrogen bonds involving O4 as a bifurcated acceptor link anion and cation in the asymmetric unit to form a seven-membered ring, with R12(7) ring motif (Bernstein et al., 1995). In the crystal structure, the ionic units and water molecules are linked via O—H···O and C—H···O hydrogen bonds (Table 1) forming a two-dimensional network parallel to the (001) [Fig. 2].

Experimental

L-Tartaric acid (7.504 g, 0.05 mol) was first dissolved in 20 ml of distilled water in a 50 ml beaker. An aqueous solution (20% in water) of tetraethylammonium hydroxide (36.59 ml, 0.05 mol) was added slowly into an aqueous solution of L-tartaric acid and the mixture was stirred with a magnetic stirrer for 2 h at room temperature. A white solid product was obtained after being dried at 343 K under vacuum for 2 d. The product was dissolved in methanol and then covered by aluminium foil to allow slow evaporation at room temperature. Clear crystalline solid was obtained after 3 d. Decomposition temperature range (471.35–472.6 K). Analysis calculated (%): C 51.60, H 9.02, N 5.01%; found: C 50.53, H 9.09, N 3.28%.

Refinement

O-bound H atoms were located in a difference Fourier map and refined freely [O—H = 0.83 (3)–1.01 (3) Å]. C-bound H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and refined as a riding model, with Uiso(H) = 1.2–1.5Ueq(C). A rotating group model was used for the methyl groups. In the absence of significant anomalous dispersion effects, Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. Hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of the title compound, viewd down the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H20N+·C4H5O6·2H2OF000 = 344
Mr = 315.36Dx = 1.318 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4555 reflections
a = 7.4074 (1) Åθ = 2.6–33.5º
b = 13.8989 (2) ŵ = 0.11 mm1
c = 8.0546 (1) ÅT = 100.0 (1) K
β = 106.553 (1)ºBlock, colourless
V = 794.891 (19) Å30.47 × 0.45 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3579 independent reflections
Radiation source: fine-focus sealed tube3240 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 100.0(1) Kθmax = 35.0º
[var phi] and ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −9→11
Tmin = 0.861, Tmax = 0.981k = −22→17
10518 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092  w = 1/[σ2(Fo2) + (0.0494P)2 + 0.0426P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3579 reflectionsΔρmax = 0.29 e Å3
218 parametersΔρmin = −0.23 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.71436 (14)0.19227 (7)−0.03566 (13)0.01818 (18)
O21.02013 (14)0.23261 (7)0.04449 (14)0.0201 (2)
O30.61932 (14)0.36818 (7)−0.18764 (12)0.01677 (18)
O40.68458 (16)0.39108 (7)0.17930 (13)0.0190 (2)
C10.83853 (18)0.25107 (9)−0.01824 (15)0.0138 (2)
C20.79871 (18)0.35668 (9)−0.06869 (15)0.0134 (2)
H2A0.89290.3785−0.12460.016*
C30.81928 (18)0.41837 (9)0.09447 (16)0.0144 (2)
H3A0.94460.40640.17390.017*
C40.80699 (19)0.52553 (9)0.04614 (16)0.0156 (2)
N10.61784 (16)0.13577 (8)0.44527 (13)0.01415 (19)
C50.68066 (19)0.05680 (10)0.34333 (17)0.0169 (2)
H5A0.56980.02320.27450.020*
H5B0.74060.08660.26380.020*
C60.8153 (2)−0.01643 (11)0.4516 (2)0.0249 (3)
H6A0.8474−0.06320.37690.037*
H6B0.7563−0.04810.52850.037*
H6C0.92750.01560.51810.037*
C70.78506 (19)0.18803 (10)0.56438 (16)0.0174 (2)
H7A0.73810.23820.62490.021*
H7B0.85500.14280.65070.021*
C80.9195 (2)0.23319 (12)0.47596 (19)0.0227 (3)
H8A1.02030.26440.56090.034*
H8B0.85320.27970.39260.034*
H8C0.97030.18410.41830.034*
C90.50734 (19)0.09482 (11)0.56176 (16)0.0186 (2)
H9A0.58800.05050.64280.022*
H9B0.47630.14710.62860.022*
C100.3270 (2)0.04279 (11)0.46895 (19)0.0218 (3)
H10A0.26740.01940.55230.033*
H10B0.3558−0.01040.40470.033*
H10C0.24370.08640.39100.033*
C110.49727 (18)0.20335 (10)0.31067 (15)0.0157 (2)
H11A0.57370.22880.24110.019*
H11B0.39590.16650.23440.019*
C120.4121 (2)0.28706 (11)0.38285 (18)0.0205 (3)
H12A0.33890.32590.28910.031*
H12B0.51100.32530.45620.031*
H12C0.33250.26300.44890.031*
O1W0.30848 (16)0.27561 (10)0.84652 (15)0.0243 (2)
O2W0.69834 (18)0.97603 (9)0.95574 (16)0.0252 (2)
O50.93673 (14)0.55475 (7)−0.01728 (15)0.0218 (2)
O60.67739 (15)0.57466 (8)0.07043 (14)0.0226 (2)
H1O21.043 (4)0.161 (2)0.045 (3)0.045 (7)*
H1O30.534 (3)0.3304 (19)−0.159 (3)0.036 (6)*
H1O40.590 (3)0.422 (2)0.122 (3)0.033 (6)*
H1W10.260 (4)0.306 (2)0.911 (4)0.055 (8)*
H2W10.316 (4)0.216 (2)0.884 (3)0.043 (7)*
H1W20.818 (4)0.9985 (19)0.980 (3)0.037 (6)*
H2W20.630 (4)1.025 (2)0.962 (3)0.039 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0174 (4)0.0115 (4)0.0261 (4)−0.0015 (3)0.0070 (4)0.0010 (4)
O20.0150 (4)0.0121 (4)0.0307 (5)0.0009 (4)0.0027 (4)−0.0024 (4)
O30.0174 (4)0.0135 (4)0.0167 (4)−0.0013 (3)0.0006 (3)0.0020 (3)
O40.0242 (5)0.0155 (4)0.0191 (4)0.0013 (4)0.0091 (4)0.0022 (3)
C10.0164 (5)0.0107 (5)0.0146 (4)0.0011 (4)0.0050 (4)−0.0005 (4)
C20.0151 (5)0.0095 (5)0.0156 (4)−0.0007 (4)0.0040 (4)0.0005 (4)
C30.0161 (5)0.0096 (5)0.0162 (5)0.0001 (4)0.0024 (4)−0.0005 (4)
C40.0164 (5)0.0104 (5)0.0180 (5)−0.0001 (4)0.0013 (4)−0.0010 (4)
N10.0153 (5)0.0138 (5)0.0131 (4)−0.0007 (4)0.0037 (3)0.0003 (3)
C50.0185 (5)0.0134 (5)0.0191 (5)−0.0001 (5)0.0057 (4)−0.0026 (4)
C60.0232 (7)0.0160 (6)0.0349 (7)0.0027 (5)0.0071 (6)0.0032 (5)
C70.0168 (5)0.0175 (6)0.0156 (5)−0.0016 (5)0.0007 (4)−0.0013 (4)
C80.0191 (6)0.0217 (7)0.0256 (6)−0.0052 (5)0.0036 (5)0.0012 (5)
C90.0200 (6)0.0209 (6)0.0162 (5)−0.0018 (5)0.0073 (4)0.0025 (4)
C100.0196 (6)0.0221 (7)0.0254 (6)−0.0029 (5)0.0089 (5)0.0024 (5)
C110.0171 (5)0.0147 (5)0.0140 (4)0.0012 (4)0.0024 (4)0.0012 (4)
C120.0213 (6)0.0161 (6)0.0235 (6)0.0025 (5)0.0055 (5)−0.0020 (5)
O1W0.0200 (5)0.0272 (6)0.0262 (5)−0.0003 (4)0.0076 (4)0.0019 (4)
O2W0.0250 (6)0.0191 (5)0.0321 (5)−0.0048 (4)0.0094 (4)−0.0044 (4)
O50.0187 (4)0.0118 (4)0.0361 (5)−0.0022 (4)0.0096 (4)0.0006 (4)
O60.0245 (5)0.0164 (5)0.0286 (5)0.0071 (4)0.0102 (4)0.0021 (4)

Geometric parameters (Å, °)

O1—C11.2084 (16)C6—H6C0.96
O2—C11.3203 (15)C7—C81.516 (2)
O2—H1O21.01 (3)C7—H7A0.97
O3—C21.4085 (16)C7—H7B0.97
O3—H1O30.90 (3)C8—H8A0.96
O4—C31.4124 (17)C8—H8B0.96
O4—H1O40.84 (3)C8—H8C0.96
C1—C21.5292 (17)C9—C101.516 (2)
C2—C31.5400 (17)C9—H9A0.97
C2—H2A0.98C9—H9B0.97
C3—C41.5356 (18)C10—H10A0.96
C3—H3A0.98C10—H10B0.96
C4—O61.2382 (17)C10—H10C0.96
C4—O51.2763 (17)C11—C121.516 (2)
N1—C111.5178 (16)C11—H11A0.97
N1—C71.5183 (17)C11—H11B0.97
N1—C91.5205 (16)C12—H12A0.96
N1—C51.5209 (17)C12—H12B0.96
C5—C61.515 (2)C12—H12C0.96
C5—H5A0.97O1W—H1W10.83 (3)
C5—H5B0.97O1W—H2W10.88 (3)
C6—H6A0.96O2W—H1W20.91 (3)
C6—H6B0.96O2W—H2W20.85 (3)
C1—O2—H1O2110.3 (15)C8—C7—N1115.36 (10)
C2—O3—H1O3110.7 (16)C8—C7—H7A108.4
C3—O4—H1O4101.3 (17)N1—C7—H7A108.4
O1—C1—O2124.88 (12)C8—C7—H7B108.4
O1—C1—C2122.38 (11)N1—C7—H7B108.4
O2—C1—C2112.74 (11)H7A—C7—H7B107.5
O3—C2—C1111.28 (10)C7—C8—H8A109.5
O3—C2—C3111.23 (10)C7—C8—H8B109.5
C1—C2—C3110.06 (10)H8A—C8—H8B109.5
O3—C2—H2A108.0C7—C8—H8C109.5
C1—C2—H2A108.0H8A—C8—H8C109.5
C3—C2—H2A108.0H8B—C8—H8C109.5
O4—C3—C4112.59 (11)C10—C9—N1115.34 (10)
O4—C3—C2110.58 (10)C10—C9—H9A108.4
C4—C3—C2109.84 (10)N1—C9—H9A108.4
O4—C3—H3A107.9C10—C9—H9B108.4
C4—C3—H3A107.9N1—C9—H9B108.4
C2—C3—H3A107.9H9A—C9—H9B107.5
O6—C4—O5126.43 (13)C9—C10—H10A109.5
O6—C4—C3119.17 (12)C9—C10—H10B109.5
O5—C4—C3114.40 (11)H10A—C10—H10B109.5
C11—N1—C7111.31 (10)C9—C10—H10C109.5
C11—N1—C9111.21 (10)H10A—C10—H10C109.5
C7—N1—C9105.96 (9)H10B—C10—H10C109.5
C11—N1—C5105.62 (9)C12—C11—N1115.18 (10)
C7—N1—C5111.49 (10)C12—C11—H11A108.5
C9—N1—C5111.36 (10)N1—C11—H11A108.5
C6—C5—N1115.24 (11)C12—C11—H11B108.5
C6—C5—H5A108.5N1—C11—H11B108.5
N1—C5—H5A108.5H11A—C11—H11B107.5
C6—C5—H5B108.5C11—C12—H12A109.5
N1—C5—H5B108.5C11—C12—H12B109.5
H5A—C5—H5B107.5H12A—C12—H12B109.5
C5—C6—H6A109.5C11—C12—H12C109.5
C5—C6—H6B109.5H12A—C12—H12C109.5
H6A—C6—H6B109.5H12B—C12—H12C109.5
C5—C6—H6C109.5H1W1—O1W—H2W1106 (3)
H6A—C6—H6C109.5H1W2—O2W—H2W2106 (2)
H6B—C6—H6C109.5
O1—C1—C2—O3−20.73 (16)C11—N1—C5—C6175.99 (11)
O2—C1—C2—O3159.12 (10)C7—N1—C5—C654.95 (15)
O1—C1—C2—C3103.04 (13)C9—N1—C5—C6−63.16 (15)
O2—C1—C2—C3−77.11 (13)C11—N1—C7—C8−60.40 (15)
O3—C2—C3—O460.68 (13)C9—N1—C7—C8178.57 (12)
C1—C2—C3—O4−63.12 (13)C5—N1—C7—C857.25 (15)
O3—C2—C3—C4−64.19 (13)C11—N1—C9—C1056.22 (15)
C1—C2—C3—C4172.01 (10)C7—N1—C9—C10177.31 (12)
O4—C3—C4—O6−5.84 (16)C5—N1—C9—C10−61.29 (15)
C2—C3—C4—O6117.86 (13)C7—N1—C11—C12−60.88 (14)
O4—C3—C4—O5174.27 (11)C9—N1—C11—C1257.02 (14)
C2—C3—C4—O5−62.03 (14)C5—N1—C11—C12177.97 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H1O2···O5i1.00 (2)1.52 (2)2.5108 (13)173 (2)
O3—H1O3···O1Wii0.91 (2)1.85 (2)2.7191 (14)162 (2)
O4—H1O4···O2Wiii0.84 (2)2.18 (2)2.9780 (16)160 (2)
O1W—H1W1···O2iv0.82 (2)2.56 (2)3.0668 (14)122 (2)
O1W—H1W1···O2Wv0.82 (2)2.57 (2)3.2155 (16)137 (2)
O1W—H2W1···O6iii0.88 (3)2.00 (3)2.8672 (15)171 (2)
O2W—H2W2···O1vi0.84 (2)2.40 (2)3.0082 (14)129 (2)
C5—H5A···O3vii0.972.563.4344 (15)151
C8—H8B···O40.962.383.3447 (16)178
C10—H10B···O3vii0.962.473.4195 (16)168
C11—H11A···O40.972.503.2693 (15)136

Symmetry codes: (i) −x+2, y−1/2, −z; (ii) x, y, z−1; (iii) −x+1, y−1/2, −z+1; (iv) x−1, y, z+1; (v) −x+1, y−1/2, −z+2; (vi) x, y+1, z+1; (vii) −x+1, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2709).

References

  • Allen, C. R., Richard, P. L., van de Ward, A. J., Water, L. G. A., Masters, A. F. & Maschmeyer, T. (2006). Tetrahedron Lett.47, 7367–7370.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jiang, Y.-Y., Wang, G.-N., Zhou, Z., Wu, Y.-T., Geng, J. & Zhang, Z.-B. (2008). Chem. Commun.8, 505–507. [PubMed]
  • Mei, S., Jin-Nan, Z. & Qi, L. (2002). Acta Chim. Sinica, 60, 1017–1024.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography