PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2500.
Published online 2008 November 29. doi:  10.1107/S1600536808039652
PMCID: PMC2960024

2-[Bis(2-amino­ethyl)amino]ethanaminium chloride dichloro­methane solvate

Abstract

In the title compound, C6H19N4 +·Cl·CH2Cl2, the non-H atoms of the ammonium ion show non-crystallographic C 3 symmetry. The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (five N—H(...)Cl and two C—H(...)Cl), which form layers parallel to the (100) plane. Two N---H...N bonds also occur.

Related literature

For the crystal structure of N,N,N-tris­(2-ammonio­ethyl)amine trichloride, see: Rasmussen & Hazell (1963 [triangle]); Hazell & Rasmussen (1968 [triangle]); Ilioudis et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2500-scheme1.jpg

Experimental

Crystal data

  • C6H19N4 +·Cl·CH2Cl2
  • M r = 267.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2500-efi5.jpg
  • a = 12.1512 (4) Å
  • b = 8.5686 (2) Å
  • c = 13.5497 (3) Å
  • β = 104.273 (2)°
  • V = 1367.23 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.65 mm−1
  • T = 200 (2) K
  • 0.17 × 0.17 × 0.17 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: none
  • 10639 measured reflections
  • 3130 independent reflections
  • 2431 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.111
  • S = 1.03
  • 3130 reflections
  • 127 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.57 e Å−3

Data collection: COLLECT (Hooft, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 200 [triangle]) and Mercury (Macrae et al., 2006 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039652/zl2162sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039652/zl2162Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MMR thanks the Fonds der Chemischen Industrie (FCI) for a PhD fellowship.

supplementary crystallographic information

Comment

The title compounds molecular structure is shown in Fig. 1. The ammonium ion does not exhibit any crystallographic symmetry but, excluding the hydrogen atoms, it shows non-crystallographic C3 symmetry.

It has to be assumed that the chloride ion is formed by a nucleophilic substitution reaction between a part of the tris(2-aminoethyl)amine and the solvent dichloromethane.

In the crystal structure, hydrogen bonds between the ammonium and chloride ions and the solvate molecule form two-dimensional networks parallel to the (100) plane (see Fig. 2). The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (see Fig. 3).

Experimental

Crystals of the title compound were obtained from a solution of tris(2-aminoethyl)amine (0.15 g, 5.0 mmol) and trimethylborate (0.52 g, 5.0 mmol) in dichloromethane (10 ml) upon slow evaporation of the solvent at room temperature.

Refinement

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 0.99 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)]. N-bonded H atoms were assigned from difference maps and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(N)].

Figures

Fig. 1.
The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
The packing and the hydrogen-bonded layers in the title compound, viewed along [0 1 0].
Fig. 3.
Hydrogen bonding to Cl1. [Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, -1/2 + y, 1/2 - z; (iii) 1 - x, -y, -z.]

Crystal data

C6H19N4+·Cl·CH2Cl2F000 = 568
Mr = 267.63Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17190 reflections
a = 12.1512 (4) Åθ = 3.1–27.5º
b = 8.5686 (2) ŵ = 0.65 mm1
c = 13.5497 (3) ÅT = 200 (2) K
β = 104.273 (2)ºBlock, colourless
V = 1367.23 (6) Å30.17 × 0.17 × 0.17 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer3130 independent reflections
Radiation source: rotating anode2431 reflections with I > 2σ(I)
Monochromator: MONTEL, graded multilayered X-ray opticsRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 27.5º
T = 200(2) Kθmin = 3.2º
[var phi] and ω scansh = −15→15
Absorption correction: nonek = −11→10
10639 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0471P)2 + 0.7878P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3130 reflectionsΔρmax = 0.51 e Å3
127 parametersΔρmin = −0.57 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.28042 (13)0.26045 (16)−0.00985 (11)0.0291 (3)
N20.40189 (14)0.52948 (18)0.11822 (12)0.0355 (4)
H10.43500.43120.11690.043*
H20.38880.54950.18460.043*
N30.36750 (14)0.01291 (18)0.14123 (12)0.0347 (4)
H30.3757−0.03260.20060.042*
H40.41110.10800.14870.042*
N40.48946 (13)0.20788 (18)−0.07457 (11)0.0324 (3)
H50.49730.2055−0.00660.039*
H60.54350.1373−0.08430.039*
H70.52400.3119−0.08900.039*
C10.22269 (16)0.3910 (2)0.02691 (15)0.0362 (4)
H80.20520.36020.09180.043*
H90.14970.4113−0.02320.043*
C20.29173 (17)0.5407 (2)0.04382 (15)0.0364 (4)
H100.30490.5746−0.02220.044*
H110.24620.62280.06660.044*
C30.28825 (16)0.2874 (2)−0.11498 (13)0.0342 (4)
H120.30850.3979−0.12260.041*
H130.21320.2678−0.16210.041*
C40.37594 (16)0.1831 (2)−0.14384 (13)0.0343 (4)
H140.35340.0725−0.14050.041*
H150.37920.2058−0.21470.041*
C50.22065 (16)0.1131 (2)−0.00284 (14)0.0355 (4)
H160.24240.0354−0.04870.043*
H170.13780.1309−0.02680.043*
C60.24633 (17)0.0466 (2)0.10427 (14)0.0362 (4)
H180.22300.12240.15040.043*
H190.2022−0.05050.10440.043*
Cl20.03789 (6)0.73386 (9)0.38860 (6)0.0703 (2)
Cl30.07369 (8)0.62211 (16)0.19725 (8)0.1163 (4)
C70.1040 (2)0.7685 (3)0.2895 (2)0.0630 (7)
H200.07800.87020.25740.076*
H210.18710.77460.31780.076*
Cl10.60198 (4)0.24526 (5)0.16855 (3)0.03439 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0323 (8)0.0290 (7)0.0272 (7)−0.0003 (6)0.0093 (6)0.0019 (6)
N20.0442 (9)0.0298 (8)0.0320 (8)0.0009 (7)0.0082 (7)−0.0019 (6)
N30.0409 (9)0.0321 (8)0.0333 (8)0.0032 (7)0.0132 (7)0.0056 (6)
N40.0375 (8)0.0331 (8)0.0276 (7)0.0026 (7)0.0101 (6)0.0001 (6)
C10.0329 (10)0.0361 (10)0.0412 (10)0.0026 (8)0.0123 (8)−0.0008 (8)
C20.0398 (10)0.0306 (9)0.0403 (10)0.0042 (8)0.0127 (8)0.0019 (8)
C30.0372 (10)0.0371 (10)0.0285 (9)0.0024 (8)0.0082 (8)0.0051 (7)
C40.0394 (10)0.0344 (10)0.0296 (9)−0.0016 (8)0.0095 (8)−0.0031 (7)
C50.0350 (10)0.0347 (10)0.0355 (9)−0.0069 (8)0.0065 (8)0.0000 (8)
C60.0383 (10)0.0352 (10)0.0382 (10)−0.0026 (8)0.0151 (8)0.0037 (8)
Cl20.0586 (4)0.0835 (5)0.0745 (4)0.0079 (3)0.0269 (3)0.0044 (3)
Cl30.0780 (6)0.1752 (11)0.1012 (7)−0.0436 (6)0.0326 (5)−0.0730 (7)
C70.0437 (13)0.0711 (17)0.0787 (18)−0.0073 (12)0.0239 (13)−0.0116 (14)
Cl10.0357 (3)0.0366 (3)0.0302 (2)−0.00045 (18)0.00691 (17)−0.00011 (17)

Geometric parameters (Å, °)

N1—C31.469 (2)C2—H100.9900
N1—C11.471 (2)C2—H110.9900
N1—C51.471 (2)C3—C41.514 (3)
N2—C21.467 (2)C3—H120.9900
N2—H10.9358C3—H130.9900
N2—H20.9660C4—H140.9900
N3—C61.462 (2)C4—H150.9900
N3—H30.8776C5—C61.518 (3)
N3—H40.9638C5—H160.9900
N4—C41.480 (2)C5—H170.9900
N4—H50.9019C6—H180.9900
N4—H60.9265C6—H190.9900
N4—H71.0244Cl2—C71.751 (3)
C1—C21.519 (3)Cl3—C71.745 (3)
C1—H80.9900C7—H200.9900
C1—H90.9900C7—H210.9900
C3—N1—C1111.05 (14)C4—C3—H12109.2
C3—N1—C5110.38 (14)N1—C3—H13109.2
C1—N1—C5110.28 (14)C4—C3—H13109.2
C2—N2—H1111.7H12—C3—H13107.9
C2—N2—H2107.2N4—C4—C3110.89 (15)
H1—N2—H2110.4N4—C4—H14109.5
C6—N3—H3106.2C3—C4—H14109.5
C6—N3—H4110.5N4—C4—H15109.5
H3—N3—H4110.1C3—C4—H15109.5
C4—N4—H5119.5H14—C4—H15108.0
C4—N4—H6113.5N1—C5—C6113.30 (15)
H5—N4—H6103.3N1—C5—H16108.9
C4—N4—H7111.5C6—C5—H16108.9
H5—N4—H7105.6N1—C5—H17108.9
H6—N4—H7101.7C6—C5—H17108.9
N1—C1—C2113.68 (15)H16—C5—H17107.7
N1—C1—H8108.8N3—C6—C5110.71 (15)
C2—C1—H8108.8N3—C6—H18109.5
N1—C1—H9108.8C5—C6—H18109.5
C2—C1—H9108.8N3—C6—H19109.5
H8—C1—H9107.7C5—C6—H19109.5
N2—C2—C1115.12 (15)H18—C6—H19108.1
N2—C2—H10108.5Cl3—C7—Cl2111.83 (15)
C1—C2—H10108.5Cl3—C7—H20109.2
N2—C2—H11108.5Cl2—C7—H20109.2
C1—C2—H11108.5Cl3—C7—H21109.2
H10—C2—H11107.5Cl2—C7—H21109.2
N1—C3—C4112.06 (15)H20—C7—H21107.9
N1—C3—H12109.2
C3—N1—C1—C2−69.7 (2)N1—C3—C4—N4−58.4 (2)
C5—N1—C1—C2167.57 (15)C3—N1—C5—C6158.47 (16)
N1—C1—C2—N2−59.7 (2)C1—N1—C5—C6−78.5 (2)
C1—N1—C3—C4162.77 (15)N1—C5—C6—N3−60.7 (2)
C5—N1—C3—C4−74.60 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1···Cl10.942.543.3897 (17)151
N2—H2···Cl1i0.972.583.4402 (16)148
N3—H3···Cl1ii0.882.573.4013 (16)159
N3—H4···Cl10.962.553.4203 (17)150
N4—H5···Cl10.902.423.2562 (15)153
N4—H6···N3iii0.931.962.862 (2)165
N4—H7···N2iv1.021.732.746 (2)171
C4—H14···Cl1iii0.992.823.7014 (18)149
C7—H21···Cl1i0.992.543.482 (3)160

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2162).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hazell, R. G. & Rasmussen, S. E. (1968). Acta Chem. Scand.22, 348–350.
  • Hooft, R. W. W. (2004). COLLECT Bruker–Nonius BV, Delft, The Netherlands.
  • Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem.24, 787–798.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rasmussen, S. E. & Hazell, R. G. (1963). Acta Chem. Scand.17, 832–842.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography