PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2461.
Published online 2008 November 26. doi:  10.1107/S1600536808037173
PMCID: PMC2960020

9-(2-Thien­yl)-9H-carbazole

Abstract

In the title compound, C16H11NS, the dihedral angles between the fused ring system and the pendant thienyl ring are 86.37 (5) and 57.14 (5)°.

Related literature

For the fluorescence properties of 9-(2-thien­yl)-9H-carbazole and its application in organic electroluminescent devices, including flat-panel displays, see: Wu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2461-scheme1.jpg

Experimental

Crystal data

  • C16H11NS
  • M r = 249.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2461-efi1.jpg
  • a = 14.412 (3) Å
  • b = 9.5831 (19) Å
  • c = 18.671 (4) Å
  • β = 100.64 (3)°
  • V = 2534.4 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 298 (2) K
  • 0.25 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.94, T max = 0.97
  • 26852 measured reflections
  • 4980 independent reflections
  • 4138 reflections with I > 2σ(I)
  • R int = 0.035
  • 3 standard reflections frequency: 60 min intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.080
  • S = 1.13
  • 4980 reflections
  • 325 parameters
  • H-atom parameters constrained
  • Δρmax = 0.11 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037173/sg2270sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037173/sg2270Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Due to its excellent fluorescence properties, 9-(2-thienyl)-9H-carbazole can be used in organic electroluminescent devices, which have received considerable attention for their potential application in flat-panel displays (Wu et al., 2001). It was readily synthesized via Ullmann reaction with copper(I) iodide as catalyst from carbazole and 2-iodothiophene.

There are two crystallographically independent molecules in the sturcture of (I). The independent molecula is built up from a central core containing three fused rings and one pendant five-membered ring. (Fig. 1). In two independent molecules, the three fused rings are coplanar within 0.0493 (15) and 0.0135 (15) Å, respectively. The five-membered rings are coplanar within 0.0062 (13) and 0.0173 (12) Å, respectively. The dihedral angles between the two components are 86.37 (5) and 57.14 (5)°, respectively.

Experimental

The title compound was synthesized via Ullmann reaction with copper(I) iodide as catalyst from carbazole and 2-iodothiophene. A solution of the compound in ethanol was concentrated gradually at room temperature to afford colorless prisms.

Refinement

H atoms were included in calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2 times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.93 Å.

Figures

Fig. 1.
The structure of (I), showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level.

Crystal data

C16H11NSF000 = 1040
Mr = 249.33Dx = 1.307 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7198 reflections
a = 14.412 (3) Åθ = 2.1–23.5º
b = 9.5831 (19) ŵ = 0.23 mm1
c = 18.671 (4) ÅT = 298 (2) K
β = 100.64 (3)ºPrismatic, colorless
V = 2534.4 (9) Å30.25 × 0.20 × 0.15 mm
Z = 8

Data collection

Bruker SMART APEX CCD diffractometer4980 independent reflections
Radiation source: fine-focus sealed tube4138 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.035
T = 298(2) Kθmax = 26.0º
ω/2θ scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −17→17
Tmin = 0.94, Tmax = 0.97k = −11→11
26852 measured reflectionsl = −23→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.080  w = 1/[σ2(Fo2) + (0.0269P)2 + 0.456P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
4980 reflectionsΔρmax = 0.11 e Å3
325 parametersΔρmin = −0.12 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.63934 (12)0.55497 (19)0.16359 (10)0.0479 (4)
C20.66476 (13)0.5659 (2)0.09552 (10)0.0528 (4)
H20.65050.49400.06180.063*
C30.71148 (12)0.68426 (19)0.07780 (10)0.0516 (4)
H30.72850.69160.03230.062*
C40.73279 (13)0.7917 (2)0.12815 (11)0.0578 (5)
H40.76400.87090.11630.069*
C50.70737 (12)0.78082 (19)0.19622 (10)0.0522 (4)
H50.72160.85270.22990.063*
C60.66065 (12)0.66244 (19)0.21394 (9)0.0497 (4)
C70.62079 (12)0.62015 (18)0.27751 (9)0.0472 (4)
C80.61740 (14)0.6816 (2)0.34441 (10)0.0566 (5)
H80.64640.76740.35630.068*
C90.57060 (13)0.6150 (2)0.39353 (11)0.0547 (5)
H90.56830.65620.43830.066*
C100.52720 (13)0.4869 (2)0.37576 (10)0.0545 (5)
H100.49590.44230.40860.065*
C110.53059 (13)0.4254 (2)0.30887 (10)0.0543 (5)
H110.50150.33970.29700.065*
C120.57739 (12)0.49203 (18)0.25974 (9)0.0449 (4)
C130.55629 (13)0.3243 (2)0.15350 (10)0.0550 (5)
C140.61217 (12)0.19052 (17)0.15100 (9)0.0451 (4)
H140.67380.16870.17280.054*
C150.53843 (13)0.1030 (2)0.10260 (11)0.0568 (5)
H150.55070.01140.09080.068*
C160.45484 (13)0.1629 (2)0.07748 (10)0.0541 (5)
H160.40630.11680.04690.065*
C170.35787 (12)0.10050 (16)0.29912 (9)0.0425 (4)
C180.43576 (12)0.06295 (18)0.26924 (10)0.0497 (4)
H180.42950.05120.21910.060*
C190.52295 (13)0.0429 (2)0.31425 (9)0.0519 (4)
H190.57510.01780.29430.062*
C200.53225 (13)0.0605 (2)0.38914 (10)0.0549 (5)
H200.59060.04710.41930.066*
C210.45436 (12)0.09801 (18)0.41902 (10)0.0490 (4)
H210.46060.10970.46910.059*
C220.36717 (12)0.11803 (17)0.37402 (9)0.0458 (4)
C230.27331 (13)0.15467 (16)0.38691 (9)0.0448 (4)
C240.23654 (13)0.18710 (19)0.44865 (9)0.0487 (4)
H240.27540.18570.49430.058*
C250.14168 (13)0.22164 (19)0.44213 (11)0.0527 (4)
H250.11710.24330.48340.063*
C260.08358 (13)0.22374 (19)0.37386 (10)0.0523 (4)
H260.02010.24680.36950.063*
C270.12036 (12)0.19131 (19)0.31212 (10)0.0506 (4)
H270.08150.19270.26640.061*
C280.21522 (12)0.15678 (16)0.31864 (9)0.0448 (4)
C290.23207 (12)0.12673 (18)0.18875 (10)0.0472 (4)
C300.23683 (11)0.00776 (19)0.13801 (9)0.0462 (4)
H300.2601−0.08190.14860.055*
C310.19480 (12)0.06941 (19)0.06602 (10)0.0520 (4)
H310.19090.01900.02300.062*
C320.16284 (13)0.2012 (2)0.06608 (10)0.0522 (4)
H320.13260.24720.02440.063*
N10.58992 (10)0.45050 (15)0.19114 (8)0.0485 (3)
N20.26435 (10)0.12467 (15)0.26517 (8)0.0474 (3)
S10.44448 (4)0.32622 (5)0.10522 (3)0.05735 (14)
S20.18295 (3)0.27280 (5)0.14807 (3)0.04925 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0430 (9)0.0521 (10)0.0493 (10)−0.0014 (8)0.0103 (8)0.0063 (8)
C20.0550 (11)0.0525 (11)0.0504 (10)−0.0083 (8)0.0080 (8)0.0116 (8)
C30.0468 (10)0.0556 (11)0.0541 (11)−0.0092 (8)0.0139 (8)0.0104 (9)
C40.0483 (10)0.0566 (11)0.0669 (12)−0.0148 (9)0.0068 (9)0.0136 (9)
C50.0470 (10)0.0510 (10)0.0509 (10)−0.0087 (8)−0.0109 (8)0.0109 (8)
C60.0436 (10)0.0505 (10)0.0493 (10)−0.0047 (8)−0.0063 (8)0.0082 (8)
C70.0417 (9)0.0472 (10)0.0497 (10)0.0078 (7)0.0009 (8)−0.0004 (8)
C80.0611 (12)0.0503 (11)0.0543 (11)0.0072 (9)−0.0002 (9)−0.0043 (9)
C90.0551 (11)0.0513 (10)0.0591 (11)0.0177 (9)0.0145 (9)−0.0086 (9)
C100.0494 (10)0.0579 (11)0.0565 (11)0.0104 (9)0.0106 (8)0.0058 (9)
C110.0545 (11)0.0531 (11)0.0552 (11)0.0009 (9)0.0097 (9)0.0028 (9)
C120.0432 (9)0.0464 (9)0.0437 (9)0.0021 (7)0.0042 (7)−0.0016 (7)
C130.0532 (11)0.0535 (11)0.0506 (10)−0.0036 (9)−0.0102 (8)−0.0099 (8)
C140.0453 (9)0.0463 (10)0.0418 (9)−0.0069 (7)0.0028 (7)−0.0079 (7)
C150.0508 (11)0.0561 (11)0.0653 (12)−0.0188 (9)0.0152 (9)−0.0135 (9)
C160.0502 (11)0.0537 (11)0.0577 (11)−0.0153 (9)0.0081 (9)−0.0165 (9)
C170.0510 (10)0.0284 (8)0.0482 (9)−0.0020 (7)0.0090 (8)0.0080 (7)
C180.0463 (10)0.0475 (10)0.0557 (11)−0.0032 (8)0.0106 (8)0.0046 (8)
C190.0548 (11)0.0571 (11)0.0465 (10)0.0114 (9)0.0166 (8)0.0084 (8)
C200.0501 (11)0.0657 (12)0.0470 (10)0.0090 (9)0.0042 (8)0.0149 (9)
C210.0503 (10)0.0445 (9)0.0490 (10)0.0020 (8)0.0005 (8)0.0069 (8)
C220.0542 (10)0.0345 (8)0.0469 (9)−0.0040 (7)0.0048 (8)0.0101 (7)
C230.0635 (11)0.0276 (8)0.0439 (9)−0.0045 (7)0.0119 (8)−0.0024 (7)
C240.0535 (11)0.0554 (11)0.0399 (9)−0.0126 (8)0.0158 (8)0.0018 (8)
C250.0532 (11)0.0464 (10)0.0600 (11)−0.0042 (8)0.0139 (9)−0.0044 (8)
C260.0523 (11)0.0565 (10)0.0499 (10)−0.0134 (9)0.0138 (8)−0.0097 (8)
C270.0465 (10)0.0527 (10)0.0539 (11)−0.0106 (8)0.0126 (8)−0.0072 (8)
C280.0532 (10)0.0303 (8)0.0515 (10)−0.0011 (7)0.0116 (8)−0.0006 (7)
C290.0502 (10)0.0431 (9)0.0494 (10)0.0099 (8)0.0118 (8)0.0140 (7)
C300.0322 (8)0.0503 (10)0.0541 (10)0.0011 (7)0.0030 (7)0.0012 (8)
C310.0471 (10)0.0538 (11)0.0555 (11)−0.0005 (8)0.0106 (8)0.0027 (9)
C320.0498 (10)0.0581 (11)0.0494 (10)0.0133 (8)0.0107 (8)0.0146 (8)
N10.0513 (8)0.0442 (8)0.0500 (8)−0.0015 (7)0.0098 (7)−0.0030 (6)
N20.0490 (8)0.0439 (8)0.0501 (8)0.0089 (6)0.0112 (7)0.0135 (6)
S10.0547 (3)0.0552 (3)0.0540 (3)−0.0029 (2)−0.0115 (2)−0.0119 (2)
S20.0514 (3)0.0445 (2)0.0527 (3)0.0103 (2)0.0120 (2)0.0151 (2)

Geometric parameters (Å, °)

C1—N11.382 (2)C17—C181.390 (2)
C1—C21.390 (2)C17—C221.390 (2)
C1—C61.390 (3)C17—N21.399 (2)
C2—C31.390 (2)C18—C191.390 (3)
C2—H20.9300C18—H180.9300
C3—C41.390 (3)C19—C201.390 (2)
C3—H30.9300C19—H190.9300
C4—C51.390 (3)C20—C211.390 (2)
C4—H40.9300C20—H200.9300
C5—C61.390 (2)C21—C221.390 (2)
C5—H50.9300C21—H210.9300
C6—C71.468 (2)C22—C231.460 (2)
C7—C81.390 (2)C23—C241.390 (2)
C7—C121.390 (2)C23—C281.390 (2)
C8—C91.390 (3)C24—C251.390 (3)
C8—H80.9300C24—H240.9300
C9—C101.390 (3)C25—C261.390 (3)
C9—H90.9300C25—H250.9300
C10—C111.390 (3)C26—C271.390 (2)
C10—H100.9300C26—H260.9300
C11—C121.390 (2)C27—C281.390 (2)
C11—H110.9300C27—H270.9300
C12—N11.385 (2)C28—N21.361 (2)
C13—N11.437 (2)C29—N21.417 (2)
C13—C141.519 (3)C29—C301.492 (2)
C13—S11.6950 (19)C29—S21.6849 (17)
C14—C151.515 (2)C30—C311.491 (2)
C14—H140.9300C30—H300.9300
C15—C161.339 (3)C31—C321.344 (2)
C15—H150.9300C31—H310.9300
C16—S11.6638 (19)C32—S21.654 (2)
C16—H160.9300C32—H320.9300
N1—C1—C2129.48 (17)C19—C18—H18120.0
N1—C1—C6110.47 (15)C17—C18—H18120.0
C2—C1—C6120.00 (17)C18—C19—C20120.00 (17)
C1—C2—C3120.00 (18)C18—C19—H19120.0
C1—C2—H2120.0C20—C19—H19120.0
C3—C2—H2120.0C21—C20—C19120.00 (17)
C2—C3—C4120.00 (17)C21—C20—H20120.0
C2—C3—H3120.0C19—C20—H20120.0
C4—C3—H3120.0C20—C21—C22120.00 (17)
C5—C4—C3120.00 (17)C20—C21—H21120.0
C5—C4—H4120.0C22—C21—H21120.0
C3—C4—H4120.0C21—C22—C17120.00 (17)
C6—C5—C4120.00 (18)C21—C22—C23134.05 (17)
C6—C5—H5120.0C17—C22—C23105.94 (15)
C4—C5—H5120.0C24—C23—C28120.00 (17)
C5—C6—C1120.00 (17)C24—C23—C22134.21 (17)
C5—C6—C7134.17 (18)C28—C23—C22105.78 (15)
C1—C6—C7105.77 (15)C25—C24—C23120.00 (17)
C8—C7—C12120.00 (17)C25—C24—H24120.0
C8—C7—C6133.90 (18)C23—C24—H24120.0
C12—C7—C6106.07 (15)C24—C25—C26120.00 (18)
C7—C8—C9120.00 (18)C24—C25—H25120.0
C7—C8—H8120.0C26—C25—H25120.0
C9—C8—H8120.0C27—C26—C25120.00 (18)
C8—C9—C10120.00 (18)C27—C26—H26120.0
C8—C9—H9120.0C25—C26—H26120.0
C10—C9—H9120.0C28—C27—C26120.00 (17)
C11—C10—C9120.00 (18)C28—C27—H27120.0
C11—C10—H10120.0C26—C27—H27120.0
C9—C10—H10120.0N2—C28—C27128.75 (16)
C12—C11—C10120.00 (18)N2—C28—C23111.24 (15)
C12—C11—H11120.0C27—C28—C23120.00 (16)
C10—C11—H11120.0N2—C29—C30125.71 (14)
N1—C12—C11129.82 (17)N2—C29—S2119.87 (13)
N1—C12—C7110.18 (15)C30—C29—S2114.42 (13)
C11—C12—C7120.00 (16)C31—C30—C29102.18 (15)
N1—C13—C14126.32 (15)C31—C30—H30128.9
N1—C13—S1116.91 (14)C29—C30—H30128.9
C14—C13—S1116.74 (12)C32—C31—C30116.99 (17)
C15—C14—C1399.68 (14)C32—C31—H31121.5
C15—C14—H14130.2C30—C31—H31121.5
C13—C14—H14130.2C31—C32—S2112.91 (14)
C16—C15—C14117.26 (17)C31—C32—H32123.5
C16—C15—H15121.4S2—C32—H32123.5
C14—C15—H15121.4C1—N1—C12107.48 (14)
C15—C16—S1114.91 (14)C1—N1—C13125.31 (15)
C15—C16—H16122.5C12—N1—C13127.19 (15)
S1—C16—H16122.5C28—N2—C17107.05 (14)
C18—C17—C22120.00 (16)C28—N2—C29128.08 (15)
C18—C17—N2130.01 (16)C17—N2—C29124.64 (15)
C22—C17—N2109.98 (15)C16—S1—C1391.39 (9)
C19—C18—C17120.00 (17)C32—S2—C2993.42 (9)
N1—C1—C2—C3177.18 (17)C28—C23—C24—C250.0 (2)
C6—C1—C2—C30.0 (3)C22—C23—C24—C25178.35 (17)
C1—C2—C3—C40.0 (3)C23—C24—C25—C260.0 (3)
C2—C3—C4—C50.0 (3)C24—C25—C26—C270.0 (3)
C3—C4—C5—C60.0 (3)C25—C26—C27—C280.0 (3)
C4—C5—C6—C10.0 (3)C26—C27—C28—N2−178.69 (17)
C4—C5—C6—C7−176.78 (18)C26—C27—C28—C230.0 (2)
N1—C1—C6—C5−177.68 (15)C24—C23—C28—N2178.91 (15)
C2—C1—C6—C50.0 (3)C22—C23—C28—N20.13 (18)
N1—C1—C6—C7−0.1 (2)C24—C23—C28—C270.0 (2)
C2—C1—C6—C7177.60 (16)C22—C23—C28—C27−178.77 (15)
C5—C6—C7—C8−2.1 (3)N2—C29—C30—C31−179.27 (16)
C1—C6—C7—C8−179.20 (19)S2—C29—C30—C310.93 (17)
C5—C6—C7—C12176.08 (19)C29—C30—C31—C32−2.7 (2)
C1—C6—C7—C12−1.02 (19)C30—C31—C32—S23.4 (2)
C12—C7—C8—C90.0 (3)C2—C1—N1—C12−176.23 (18)
C6—C7—C8—C9177.97 (18)C6—C1—N1—C121.2 (2)
C7—C8—C9—C100.0 (3)C2—C1—N1—C132.3 (3)
C8—C9—C10—C110.0 (3)C6—C1—N1—C13179.69 (16)
C9—C10—C11—C120.0 (3)C11—C12—N1—C1178.44 (18)
C10—C11—C12—N1179.68 (17)C7—C12—N1—C1−1.85 (19)
C10—C11—C12—C70.0 (3)C11—C12—N1—C130.0 (3)
C8—C7—C12—N1−179.74 (16)C7—C12—N1—C13179.66 (16)
C6—C7—C12—N11.78 (19)C14—C13—N1—C185.2 (2)
C8—C7—C12—C110.0 (3)S1—C13—N1—C1−92.9 (2)
C6—C7—C12—C11−178.48 (16)C14—C13—N1—C12−96.6 (2)
N1—C13—C14—C15−178.93 (18)S1—C13—N1—C1285.3 (2)
S1—C13—C14—C15−0.78 (19)C27—C28—N2—C17178.81 (17)
C13—C14—C15—C161.1 (2)C23—C28—N2—C170.03 (18)
C14—C15—C16—S1−1.1 (2)C27—C28—N2—C294.2 (3)
C22—C17—C18—C190.0 (2)C23—C28—N2—C29−174.56 (15)
N2—C17—C18—C19−179.34 (17)C18—C17—N2—C28179.21 (17)
C17—C18—C19—C200.0 (3)C22—C17—N2—C28−0.19 (17)
C18—C19—C20—C210.0 (3)C18—C17—N2—C29−6.0 (3)
C19—C20—C21—C220.0 (3)C22—C17—N2—C29174.63 (15)
C20—C21—C22—C170.0 (2)C30—C29—N2—C28−125.31 (19)
C20—C21—C22—C23178.93 (18)S2—C29—N2—C2854.5 (2)
C18—C17—C22—C210.0 (2)C30—C29—N2—C1761.0 (2)
N2—C17—C22—C21179.46 (15)S2—C29—N2—C17−119.22 (16)
C18—C17—C22—C23−179.20 (14)C15—C16—S1—C130.45 (17)
N2—C17—C22—C230.27 (17)N1—C13—S1—C16178.60 (16)
C21—C22—C23—C242.2 (3)C14—C13—S1—C160.28 (16)
C17—C22—C23—C24−178.76 (17)C31—C32—S2—C29−2.25 (16)
C21—C22—C23—C28−179.28 (18)N2—C29—S2—C32−179.18 (15)
C17—C22—C23—C28−0.24 (17)C30—C29—S2—C320.64 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2270).

References

  • Bruker (2000). CAD-4 EXPRESS SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, I.-Y., Lin, J. T., Tao, Y.-T., Balasubramaniam, E., Su, Y. Z. & Ko, C.-W. (2001). Chem. Mater.13, 2626–2631.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography