PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2327.
Published online 2008 November 13. doi:  10.1107/S1600536808036738
PMCID: PMC2960015

N,N′-Bis(2,2,3,3,4,4,4-hepta­fluoro­butyl)naphthalene-1,4:5,8-tetra­carboximide

Abstract

The title mol­ecule, C22H8F14N2O4, lies across a crystallographic inversion center with the naphthalene diimide core essentially planar (mean deviation from plane is 0.0583 Å). The CF2 groups in the perfluorobutyl chains are in an energetically favorable all trans conformation. In the crystal structure, mol­ecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus minimizing any possible π–π overlap.

Related literature

For general background on the semic-conducting properties and use of this class of materials in organic thin-film transistor applications, see: Chesterfield et al. (2004a [triangle],b [triangle]); Facceti et al. (2008 [triangle]); Jones et al. (2004 [triangle]); Katz et al. (2000a [triangle],b [triangle]); Kazmaier & Hoffmann (1994 [triangle]); Klebe et al. (1989 [triangle]); Shukla et al. (2008 [triangle]); Wurthner (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2327-scheme1.jpg

Experimental

Crystal data

  • C22H8F14N2O4
  • M r = 630.30
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2327-efi1.jpg
  • a = 5.1910 (5) Å
  • b = 10.1459 (12) Å
  • c = 11.5988 (15) Å
  • α = 66.693 (4)°
  • β = 79.064 (4)°
  • γ = 89.115 (7)°
  • V = 549.64 (11) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 293 (2) K
  • 0.15 × 0.10 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 3049 measured reflections
  • 2094 independent reflections
  • 909 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.223
  • S = 0.93
  • 2094 reflections
  • 190 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and Materials Studio (Accelrys, 2002 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036738/lh2728sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036738/lh2728Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Thomas R. Welter and Thomas N. Blanton of Eastman Kodak Company for their help in the preparation of this material and crystals of this material, respectively.

supplementary crystallographic information

Comment

Amongst n-type semiconductors used in organic thin film transistors, perylene diimides (PDIs) and naphthalene diimides (NDIs) have attracted considerable attention. The π -orbital wavefunctions in these systems form nodes at the two nitrogen positions in the imide rings. Indeed, it has been shown that semiconducting properties and device performance of these materials is very sensitive to the nature of substituents on the diimide nitrogen atoms. The title compound N,N'-Bis(1H,1H-perfluorobutyl) naphthalene- 1,4,5,8-tetracarboxylic acid diimide(I) has been shown to exhibit good n-type semiconducting behavior and OTFTs made incorporating I can be operated in air. The latter property has been ascribed to the denser packing of fluorinated alkyl chains in thin film.

Naphthalene diimide (NDI) and perylene diimide (PDI) based systems have been studied extensively (Chesterfield, et al., 2004a; Chesterfield et al., 2004b; Facceti et al., 2008; Jones, et al., 2004; Katz, et al., 2000a; Katz, et al., 2000b). We report here the structure of the title diimide molecule (I) (Fig. 1 and Fig 2). In the crystal structure, molecules are packed in slightly displaced layers so that the side chains overlap the aromatic naphthalene diimide rings, thus resulting in minimizing any possible π-π overlap (Fig .3).

Experimental

The method described in Katz et al., 2000a, was followed for preparation of the title compound (I). Crystals of title (I) appeared during powder X-ray diffraction data collection of the dry lot sample. The crystals were weakly diffracting, but we were unable to get better quality crystals. Diffraction data were collected on various crystals, and the results of structure determination using best data set results are reported here.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.97 Å, Uiso = 1.2Ueq (C) for CH2 atoms.

Figures

Fig. 1.
Molecular structure of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.
Fig. 2.
A diagram illustrating planar naphthalene diimide core and trans configuration of perfluorobutyl chains on diiimide N atoms.
Fig. 3.
Unit cell packing showing layered structure.

Crystal data

C22H8F14N2O4Z = 1
Mr = 630.30F000 = 312
Triclinic, P1Dx = 1.904 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.1910 (5) ÅCell parameters from 4558 reflections
b = 10.1459 (12) Åθ = 1.0–26.7º
c = 11.5988 (15) ŵ = 0.21 mm1
α = 66.693 (4)ºT = 293 (2) K
β = 79.064 (4)ºNeedle, pink
γ = 89.115 (7)º0.15 × 0.10 × 0.05 mm
V = 549.64 (11) Å3

Data collection

Nonius KappaCCD diffractometer2094 independent reflections
Radiation source: fine-focus sealed tube909 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.057
Detector resolution: 9 pixels mm-1θmax = 26.6º
T = 293(2) Kθmin = 4.1º
[var phi] and ω scansh = −6→6
Absorption correction: nonek = −12→11
3049 measured reflectionsl = −14→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.223  w = 1/[σ2(Fo2) + (0.1P)2 + 0.3623P] where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2094 reflectionsΔρmax = 0.23 e Å3
190 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
F10.1050 (6)0.4145 (3)0.7561 (3)0.0814 (11)
F20.1713 (6)0.5174 (3)0.8788 (3)0.0828 (12)
F30.5849 (6)0.3623 (4)0.9393 (3)0.0873 (12)
F40.5572 (7)0.2684 (3)0.8049 (3)0.0883 (12)
F50.3622 (7)0.0974 (4)1.0537 (3)0.0931 (12)
F60.0806 (7)0.2472 (4)1.0654 (4)0.1050 (15)
F70.0800 (9)0.1477 (4)0.9346 (4)0.1234 (17)
O10.2493 (8)0.6081 (4)0.4924 (4)0.0742 (12)
O20.5194 (8)0.8024 (4)0.7439 (4)0.0725 (12)
N10.3566 (7)0.6967 (4)0.6298 (4)0.0484 (11)
C10.2325 (10)0.7037 (5)0.5308 (5)0.0528 (14)
C20.0799 (9)0.8305 (5)0.4790 (5)0.0467 (12)
C3−0.0607 (10)0.8401 (5)0.3865 (5)0.0562 (14)
H3−0.05570.76790.35590.067*
C4−0.2109 (10)0.9584 (5)0.3386 (5)0.0541 (14)
H4−0.30580.96370.27670.065*
C50.0752 (9)0.9387 (5)0.5243 (4)0.0440 (12)
C60.2199 (9)0.9345 (5)0.6184 (5)0.0482 (13)
C70.3779 (10)0.8079 (5)0.6691 (5)0.0523 (14)
C80.4892 (9)0.5658 (5)0.6912 (5)0.0537 (14)
H8A0.63550.58910.72240.064*
H8B0.55800.52570.62920.064*
C90.2958 (10)0.4562 (6)0.8023 (5)0.0544 (14)
C100.4188 (10)0.3238 (5)0.8827 (5)0.0550 (14)
C110.2281 (13)0.2022 (6)0.9871 (6)0.0676 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.061 (2)0.082 (2)0.086 (2)−0.0057 (16)−0.0279 (18)−0.0114 (19)
F20.091 (2)0.063 (2)0.074 (2)0.0213 (17)0.0167 (18)−0.0222 (18)
F30.074 (2)0.098 (3)0.083 (3)−0.0005 (18)−0.0340 (18)−0.021 (2)
F40.108 (3)0.077 (2)0.070 (2)0.0396 (19)−0.0012 (19)−0.0278 (19)
F50.107 (3)0.071 (2)0.078 (2)0.025 (2)−0.018 (2)−0.0064 (19)
F60.101 (3)0.087 (3)0.082 (3)0.023 (2)0.026 (2)−0.007 (2)
F70.147 (4)0.081 (3)0.125 (4)−0.039 (3)−0.057 (3)−0.008 (3)
O10.095 (3)0.070 (3)0.073 (3)0.031 (2)−0.024 (2)−0.042 (2)
O20.079 (3)0.067 (3)0.080 (3)0.0131 (19)−0.038 (2)−0.029 (2)
N10.054 (2)0.040 (2)0.051 (3)0.0061 (18)−0.010 (2)−0.018 (2)
C10.059 (3)0.046 (3)0.052 (3)0.009 (3)−0.006 (3)−0.021 (3)
C20.049 (3)0.048 (3)0.044 (3)0.003 (2)−0.002 (2)−0.023 (3)
C30.068 (3)0.051 (3)0.057 (3)0.006 (3)−0.015 (3)−0.028 (3)
C40.064 (3)0.058 (3)0.047 (3)0.005 (3)−0.016 (2)−0.026 (3)
C50.045 (3)0.044 (3)0.038 (3)0.001 (2)−0.002 (2)−0.014 (2)
C60.046 (3)0.051 (3)0.041 (3)0.003 (2)−0.003 (2)−0.014 (3)
C70.051 (3)0.052 (3)0.044 (3)0.000 (2)−0.004 (3)−0.012 (3)
C80.050 (3)0.055 (3)0.051 (3)0.009 (2)−0.010 (2)−0.017 (3)
C90.053 (3)0.056 (3)0.057 (4)0.010 (3)−0.010 (3)−0.026 (3)
C100.060 (3)0.058 (3)0.054 (3)0.014 (3)−0.011 (3)−0.031 (3)
C110.085 (4)0.056 (4)0.058 (4)0.003 (3)−0.024 (4)−0.015 (3)

Geometric parameters (Å, °)

F1—C91.357 (6)C2—C51.389 (6)
F2—C91.341 (6)C3—C41.402 (7)
F3—C101.325 (6)C3—H30.9300
F4—C101.338 (6)C4—C6i1.360 (7)
F5—C111.321 (6)C4—H40.9300
F6—C111.294 (7)C5—C61.425 (6)
F7—C111.314 (6)C5—C5i1.435 (9)
O1—C11.213 (6)C6—C4i1.360 (7)
O2—C71.223 (6)C6—C71.491 (7)
N1—C71.387 (6)C8—C91.522 (7)
N1—C11.398 (6)C8—H8A0.9700
N1—C81.467 (6)C8—H8B0.9700
C1—C21.477 (7)C9—C101.513 (7)
C2—C31.380 (7)C10—C111.539 (8)
C7—N1—C1124.8 (4)N1—C8—C9109.7 (4)
C7—N1—C8117.3 (5)N1—C8—H8A109.7
C1—N1—C8117.8 (4)C9—C8—H8A109.7
O1—C1—N1120.4 (5)N1—C8—H8B109.7
O1—C1—C2123.0 (5)C9—C8—H8B109.7
N1—C1—C2116.6 (5)H8A—C8—H8B108.2
C3—C2—C5120.2 (5)F2—C9—F1105.5 (4)
C3—C2—C1119.6 (5)F2—C9—C10108.6 (4)
C5—C2—C1120.2 (5)F1—C9—C10108.7 (4)
C2—C3—C4120.1 (5)F2—C9—C8110.1 (4)
C2—C3—H3119.9F1—C9—C8109.2 (4)
C4—C3—H3119.9C10—C9—C8114.3 (4)
C6i—C4—C3120.9 (5)F3—C10—F4107.7 (4)
C6i—C4—H4119.6F3—C10—C9109.0 (4)
C3—C4—H4119.6F4—C10—C9108.5 (4)
C2—C5—C6122.3 (5)F3—C10—C11107.7 (5)
C2—C5—C5i120.6 (6)F4—C10—C11107.2 (5)
C6—C5—C5i117.2 (6)C9—C10—C11116.4 (5)
C4i—C6—C5121.0 (5)F6—C11—F7109.6 (6)
C4i—C6—C7121.4 (5)F6—C11—F5108.2 (5)
C5—C6—C7117.7 (5)F7—C11—F5107.3 (5)
O2—C7—N1121.5 (5)F6—C11—C10111.6 (5)
O2—C7—C6120.7 (5)F7—C11—C10110.2 (5)
N1—C7—C6117.8 (5)F5—C11—C10109.8 (5)
C7—N1—C1—O1171.2 (4)C4i—C6—C7—N1173.8 (4)
C8—N1—C1—O1−4.5 (7)C5—C6—C7—N1−5.4 (6)
C7—N1—C1—C2−9.8 (7)C7—N1—C8—C995.1 (5)
C8—N1—C1—C2174.5 (4)C1—N1—C8—C9−88.9 (5)
O1—C1—C2—C32.8 (8)N1—C8—C9—F2−50.4 (6)
N1—C1—C2—C3−176.1 (4)N1—C8—C9—F165.0 (6)
O1—C1—C2—C5−178.0 (5)N1—C8—C9—C10−173.0 (5)
N1—C1—C2—C53.1 (7)F2—C9—C10—F3−59.0 (5)
C5—C2—C3—C4−0.6 (7)F1—C9—C10—F3−173.3 (4)
C1—C2—C3—C4178.6 (4)C8—C9—C10—F364.4 (6)
C2—C3—C4—C6i0.4 (8)F2—C9—C10—F4−176.0 (4)
C3—C2—C5—C6−179.1 (4)F1—C9—C10—F469.7 (5)
C1—C2—C5—C61.7 (7)C8—C9—C10—F4−52.6 (6)
C3—C2—C5—C5i0.0 (8)F2—C9—C10—C1163.0 (6)
C1—C2—C5—C5i−179.2 (5)F1—C9—C10—C11−51.3 (7)
C2—C5—C6—C4i−179.8 (4)C8—C9—C10—C11−173.5 (5)
C5i—C5—C6—C4i1.1 (8)F3—C10—C11—F665.9 (6)
C2—C5—C6—C7−0.6 (7)F4—C10—C11—F6−178.4 (5)
C5i—C5—C6—C7−179.7 (5)C9—C10—C11—F6−56.8 (7)
C1—N1—C7—O2−169.7 (5)F3—C10—C11—F7−172.1 (5)
C8—N1—C7—O26.0 (7)F4—C10—C11—F7−56.4 (6)
C1—N1—C7—C611.0 (7)C9—C10—C11—F765.2 (7)
C8—N1—C7—C6−173.3 (4)F3—C10—C11—F5−54.1 (7)
C4i—C6—C7—O2−5.5 (7)F4—C10—C11—F561.6 (6)
C5—C6—C7—O2175.3 (4)C9—C10—C11—F5−176.8 (5)

Symmetry codes: (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2728).

References

  • Accelrys (2002). Materials Studio Accelrys Inc., San Diego, California.
  • Chesterfield, R. J., McKeen, J. C., Newman, C. R., Ewbank, P. C., da SilvaFilho, D. A., Brédas, J. L., Miller, L. L., Mann, K. R. & Frisbie, C. D. (2004a). J. Phys. Chem. B, 108, 19281–19292.
  • Chesterfield, R. J., McKeen, J. C., Newman, C. R., Frisbie, C. D., Ewbank, P. C., Mann, K. R. & Miller, L. L. (2004b). Appl. Phys. Lett.95, 6396–6405.
  • Facceti, A., Yoon, M.-H. & Marks, T. J. (2008). Adv. Mater.17, 1705–1725.
  • Jones, B. A., Ahrens, M. J., Yoon, M.-H., Facchetti, A., Marks, T. J. & Wasielewski, M. R. (2004). Angew. Chem. Int. Ed.43, 6363–6366. [PubMed]
  • Katz, H. E., Johnson, J., Lovinger, A. J. & Li, W. (2000a). J. Am. Chem. Soc.122, 7787–7792.
  • Katz, H. E., Lovinger, A. J., Johnson, J., Kloc, C., Siegrist, T., Li, W., Lin, Y.-Y. & Dodabalapur, A. (2000b). Nature (London), 404, 478–481. [PubMed]
  • Kazmaier, P. M. & Hoffmann, R. (1994). J. Am. Chem. Soc.116, 9684–9691.
  • Klebe, G., Graser, F., Hädicke, E. & Berndt, J. (1989). Acta Cryst. B45, 69–77.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shukla, D., Nelson, S. F., Freeman, D. C., Rajeswaran, M., Ahearn, W. G., Meyer, D. M. & Carey, J. T. (2008). Chem. Mater. In the press.
  • Westrip, S. P. (2008). publCIF In preparation.
  • Wurthner, F. (2004). Chem. Commun. pp. 1564–1579. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography