PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2457.
Published online 2008 November 26. doi:  10.1107/S1600536808039020
PMCID: PMC2960014

1-Tetra­decyl­pyridinium bromide monohydrate

Abstract

In the title compound, C19H34N+·Br·H2O, the dihedral angle between the trans-planar alkyl side chain and the pyridinium ring is 52.73 (7)°. In the crystal structure, O—H(...)Br, C—H(...)Br and C—H(...)O hydrogen bonds form a network, while the hydro­phobic alkyl chains inter­digitate, forming bilayers.

Related literature

For a related structure see: Vongbupnimit et al. (1995 [triangle]). For details of critical micelle concentrations in quaternary nitro­gen species, see: González-Pérez et. al. (2006 [triangle]). Fo lipid bilayers, see: Israelachvili (1985 [triangle]). For a discussion of hydrogen bonding, see: Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2457-scheme1.jpg

Experimental

Crystal data

  • C19H34N+·Br·H2O
  • M r = 374.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2457-efi1.jpg
  • a = 5.5061 (13) Å
  • b = 7.4731 (18) Å
  • c = 25.039 (7) Å
  • α = 83.464 (15)°
  • β = 85.196 (14)°
  • γ = 79.439 (14)°
  • V = 1004.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.05 mm−1
  • T = 92 (2) K
  • 0.21 × 0.11 × 0.02 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.767, T max = 0.960
  • 16693 measured reflections
  • 4039 independent reflections
  • 3598 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.074
  • S = 1.09
  • 4039 reflections
  • 208 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039020/hb2826sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039020/hb2826Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the University of Otago for financial support. We thank the Tertiary Education Commission (New Zealand) for the award of a Bright Futures Top Achiever Doctoral scholarship to JAK.

supplementary crystallographic information

Comment

In a study to evaluate the physical properties of quaternary nitrogen species in solution, 1-tetradecylpyridinium bromide (I) was synthesized. Crystals were grown to investigate the most stable structure when the concentration of the salt was at its highest and thus suggest possible structures formed at concentrations above the critical micelle concentration, 2.77 × 10 -3 molL-1 at 298 K, (González-Pérez et. al., 2006).

The asymmetric unit of (I), Figure 1, comprises the desired alkyl pyridinium cation with a bromide counter anion and a water molecule of crystallization. The hydrophobic C14 alkyl chain has a trans-planar arrangement. This is the expected conformation, and is very similar to that of 1-dodeylpyridinium chloride monohydrate (Vongbupnimit et al., 1995). The dihedral angle formed between the alkyl chain and the pyridinium ring is 52.73 (7)°, more acute than the 79.16° seen in 1-dodecylpyridinium chloride monohydrate (Vongbupnimit et al.,1995). Packing in this structure, Figure 2, is governed primarily by hydrogen bonding, including both classical O—H donors and non-classical C—H donors. The bromide ion accepts a weak hydrogen bond [O1···Br1 = 3.336 (2) Å and <(O1—H1x···Br1) = 178 (3)°] from the water molecule (Desiraju & Steiner, 1999) and symmetry links it to another water molecule [O1···Br1i = 3.330 (2) Å and <(O1—H1x···Br1i) = 174 (3)° (i = x + 1, y, z)]. There are also five non-classical hydrogen bonds between C—H donors and either the bromide anion or the water molecule. Four of these interactions involve pyridinium C—H groups whilst one involves the methylene group attached directly to the pyridinium nitrogen, (Table 1). Hydrophobic interactions between the alkyl chains give rise to interdigitated molecules that resemble the structure of a lipid bilayer. This may indicate that, in solution, structures at higher concentrations of the surfactant may resemble lipid bilayers and stacked lipid bilayers as suggested by Isrealachvili (1985).

Experimental

1-Tetradecylpyridiniumbromide was synthesized by heating 1-bromotetradecane in pyridine at reflux for three hours. Excess pyridine was removed under reduced pressure and the resulting solid dissolved in a minimum of CHCl3. Pouring this slowly into stirring ethyl acetate resulted in the formation of a white solid which was subsequently filtered and recrystallized from methanol. The solid was dissolved in water and left to slowly evaporate, affording colourless plates of (I).

Refinement

All H-atoms, except for water H atoms, were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic, 0.99 Å, Uiso = 1.2Ueq (C) for CH2 and 0.99 Å, Uiso = 1.2Ueq (C) for CH3 atoms. The water H-atoms were found from a difference map and refined isotropically.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability elipsoids for the non-hydrogen atoms.
Fig. 2.
Packing of (I) viewed in the b direction. Hydrogen atoms not involved in hydrogen bonding have been removed for clarity.

Crystal data

C19H34N+·Br·H2OZ = 2
Mr = 374.40F000 = 400
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 5.5061 (13) ÅCell parameters from 6262 reflections
b = 7.4731 (18) Åθ = 2.5–26.1º
c = 25.039 (7) ŵ = 2.05 mm1
α = 83.464 (15)ºT = 92 (2) K
β = 85.196 (14)ºPlate, colourless
γ = 79.439 (14)º0.21 × 0.11 × 0.02 mm
V = 1004.2 (4) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer4039 independent reflections
Radiation source: fine-focus sealed tube3598 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.052
T = 92(2) Kθmax = 26.5º
[var phi] and ω scansθmin = 3.1º
Absorption correction: multi-scan(SADABS; Bruker, 2006)h = −6→6
Tmin = 0.767, Tmax = 0.960k = −9→9
16693 measured reflectionsl = −31→31

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074  w = 1/[σ2(Fo2) + (0.0278P)2 + 0.264P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4039 reflectionsΔρmax = 0.35 e Å3
208 parametersΔρmin = −0.40 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N11.5509 (3)−0.1133 (2)0.38384 (7)0.0156 (4)
C11.7539 (4)−0.2366 (3)0.39655 (10)0.0194 (5)
H11.8848−0.26310.36990.023*
C21.7739 (4)−0.3246 (3)0.44777 (10)0.0226 (5)
H21.9185−0.41040.45650.027*
C31.5829 (4)−0.2874 (3)0.48646 (10)0.0228 (5)
H31.5947−0.34610.52210.027*
C41.3725 (4)−0.1622 (3)0.47226 (10)0.0220 (5)
H41.2376−0.13620.49810.026*
C51.3608 (4)−0.0763 (3)0.42071 (9)0.0196 (5)
H51.21770.00960.41110.024*
C61.5377 (4)−0.0140 (3)0.32897 (9)0.0192 (5)
H6A1.6922−0.05660.30740.023*
H6B1.52810.11820.33190.023*
C71.3178 (4)−0.0397 (3)0.29934 (9)0.0198 (5)
H7A1.16160.01010.31930.024*
H7B1.3214−0.17180.29740.024*
C81.3274 (4)0.0584 (3)0.24257 (9)0.0204 (5)
H8A1.32550.18990.24520.025*
H8B1.48600.00910.22350.025*
C91.1161 (4)0.0407 (3)0.20918 (9)0.0217 (5)
H9A1.1166−0.09070.20670.026*
H9B0.95720.09170.22790.026*
C101.1310 (4)0.1377 (3)0.15259 (9)0.0206 (5)
H10A1.29150.08800.13430.025*
H10B1.12850.26920.15520.025*
C110.9233 (4)0.1197 (3)0.11784 (9)0.0219 (5)
H11A0.9264−0.01160.11480.026*
H11B0.76250.16880.13620.026*
C120.9401 (4)0.2189 (3)0.06138 (9)0.0210 (5)
H12A1.10140.17030.04320.025*
H12B0.93630.35030.06440.025*
C130.7339 (4)0.2011 (3)0.02618 (9)0.0214 (5)
H13A0.73840.06980.02280.026*
H13B0.57250.24900.04440.026*
C140.7506 (4)0.3014 (3)−0.02994 (9)0.0215 (5)
H14A0.91220.2535−0.04820.026*
H14B0.74630.4326−0.02660.026*
C150.5455 (4)0.2843 (3)−0.06533 (9)0.0207 (5)
H15A0.54970.1531−0.06870.025*
H15B0.38390.3323−0.04710.025*
C160.5619 (4)0.3841 (3)−0.12136 (9)0.0211 (5)
H16A0.72320.3358−0.13960.025*
H16B0.55840.5153−0.11800.025*
C170.3558 (4)0.3677 (3)−0.15676 (9)0.0198 (5)
H17A0.36050.2366−0.16040.024*
H17B0.19440.4147−0.13830.024*
C180.3709 (4)0.4697 (3)−0.21286 (9)0.0236 (5)
H18A0.53150.4219−0.23150.028*
H18B0.36720.6007−0.20930.028*
C190.1630 (5)0.4532 (3)−0.24755 (10)0.0257 (5)
H19A0.16610.3239−0.25170.031*
H19B0.18580.5201−0.28310.031*
H19C0.00330.5048−0.23020.031*
O10.8690 (4)0.2223 (3)0.40217 (8)0.0278 (4)
H1X0.738 (6)0.283 (4)0.3942 (12)0.042 (9)*
H1Y0.966 (7)0.285 (5)0.3937 (14)0.054 (12)*
Br10.32197 (4)0.46172 (3)0.367608 (9)0.02012 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0170 (9)0.0141 (9)0.0155 (10)−0.0011 (8)−0.0041 (8)−0.0013 (7)
C10.0159 (11)0.0191 (12)0.0223 (13)0.0003 (9)−0.0026 (9)−0.0025 (9)
C20.0218 (12)0.0221 (12)0.0228 (13)0.0012 (10)−0.0089 (10)−0.0009 (10)
C30.0312 (13)0.0190 (12)0.0191 (13)−0.0060 (10)−0.0075 (10)0.0015 (10)
C40.0235 (12)0.0225 (12)0.0198 (13)−0.0026 (10)−0.0003 (10)−0.0044 (10)
C50.0179 (11)0.0191 (11)0.0218 (13)−0.0001 (9)−0.0038 (9)−0.0055 (9)
C60.0223 (12)0.0183 (11)0.0167 (12)−0.0035 (10)−0.0037 (9)0.0008 (9)
C70.0190 (11)0.0206 (12)0.0199 (13)−0.0039 (10)−0.0049 (9)0.0009 (9)
C80.0195 (12)0.0225 (12)0.0195 (13)−0.0052 (10)−0.0034 (9)0.0010 (10)
C90.0219 (12)0.0237 (12)0.0202 (13)−0.0079 (10)−0.0047 (10)0.0033 (10)
C100.0194 (12)0.0222 (12)0.0203 (13)−0.0051 (10)−0.0031 (10)0.0013 (10)
C110.0221 (12)0.0230 (12)0.0211 (13)−0.0066 (10)−0.0052 (10)0.0023 (10)
C120.0200 (12)0.0239 (12)0.0190 (13)−0.0058 (10)−0.0027 (10)0.0026 (10)
C130.0211 (12)0.0241 (12)0.0200 (13)−0.0071 (10)−0.0060 (10)0.0023 (10)
C140.0205 (12)0.0256 (13)0.0189 (13)−0.0066 (10)−0.0038 (10)0.0023 (10)
C150.0221 (12)0.0217 (12)0.0193 (13)−0.0075 (10)−0.0040 (10)0.0021 (10)
C160.0199 (12)0.0238 (12)0.0197 (13)−0.0056 (10)−0.0031 (10)0.0016 (10)
C170.0203 (12)0.0209 (12)0.0181 (12)−0.0046 (10)−0.0024 (9)0.0009 (9)
C180.0238 (12)0.0310 (13)0.0160 (12)−0.0060 (11)−0.0027 (10)0.0009 (10)
C190.0279 (13)0.0310 (14)0.0187 (13)−0.0081 (11)−0.0040 (10)0.0026 (10)
O10.0181 (9)0.0226 (10)0.0397 (12)0.0006 (9)−0.0037 (8)0.0046 (8)
Br10.01596 (12)0.02031 (13)0.02261 (14)0.00038 (9)−0.00376 (9)0.00022 (9)

Geometric parameters (Å, °)

N1—C11.347 (3)C11—H11A0.9900
N1—C51.347 (3)C11—H11B0.9900
N1—C61.486 (3)C12—C131.527 (3)
C1—C21.376 (3)C12—H12A0.9900
C1—H10.9500C12—H12B0.9900
C2—C31.380 (3)C13—C141.519 (3)
C2—H20.9500C13—H13A0.9900
C3—C41.393 (3)C13—H13B0.9900
C3—H30.9500C14—C151.524 (3)
C4—C51.376 (3)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—H50.9500C15—C161.516 (3)
C6—C71.524 (3)C15—H15A0.9900
C6—H6A0.9900C15—H15B0.9900
C6—H6B0.9900C16—C171.528 (3)
C7—C81.525 (3)C16—H16A0.9900
C7—H7A0.9900C16—H16B0.9900
C7—H7B0.9900C17—C181.523 (3)
C8—C91.522 (3)C17—H17A0.9900
C8—H8A0.9900C17—H17B0.9900
C8—H8B0.9900C18—C191.524 (3)
C9—C101.519 (3)C18—H18A0.9900
C9—H9A0.9900C18—H18B0.9900
C9—H9B0.9900C19—H19A0.9800
C10—C111.527 (3)C19—H19B0.9800
C10—H10A0.9900C19—H19C0.9800
C10—H10B0.9900O1—H1X0.80 (3)
C11—C121.524 (3)O1—H1Y0.77 (4)
C1—N1—C5120.7 (2)C10—C11—H11B108.8
C1—N1—C6119.90 (19)H11A—C11—H11B107.7
C5—N1—C6119.42 (18)C11—C12—C13114.38 (18)
N1—C1—C2120.8 (2)C11—C12—H12A108.7
N1—C1—H1119.6C13—C12—H12A108.7
C2—C1—H1119.6C11—C12—H12B108.7
C1—C2—C3119.7 (2)C13—C12—H12B108.7
C1—C2—H2120.2H12A—C12—H12B107.6
C3—C2—H2120.2C14—C13—C12114.16 (19)
C2—C3—C4118.7 (2)C14—C13—H13A108.7
C2—C3—H3120.6C12—C13—H13A108.7
C4—C3—H3120.6C14—C13—H13B108.7
C5—C4—C3119.8 (2)C12—C13—H13B108.7
C5—C4—H4120.1H13A—C13—H13B107.6
C3—C4—H4120.1C13—C14—C15114.50 (19)
N1—C5—C4120.4 (2)C13—C14—H14A108.6
N1—C5—H5119.8C15—C14—H14A108.6
C4—C5—H5119.8C13—C14—H14B108.6
N1—C6—C7113.80 (18)C15—C14—H14B108.6
N1—C6—H6A108.8H14A—C14—H14B107.6
C7—C6—H6A108.8C16—C15—C14114.58 (18)
N1—C6—H6B108.8C16—C15—H15A108.6
C7—C6—H6B108.8C14—C15—H15A108.6
H6A—C6—H6B107.7C16—C15—H15B108.6
C6—C7—C8110.00 (18)C14—C15—H15B108.6
C6—C7—H7A109.7H15A—C15—H15B107.6
C8—C7—H7A109.7C15—C16—C17114.58 (19)
C6—C7—H7B109.7C15—C16—H16A108.6
C8—C7—H7B109.7C17—C16—H16A108.6
H7A—C7—H7B108.2C15—C16—H16B108.6
C9—C8—C7114.39 (19)C17—C16—H16B108.6
C9—C8—H8A108.7H16A—C16—H16B107.6
C7—C8—H8A108.7C18—C17—C16114.54 (19)
C9—C8—H8B108.7C18—C17—H17A108.6
C7—C8—H8B108.7C16—C17—H17A108.6
H8A—C8—H8B107.6C18—C17—H17B108.6
C10—C9—C8113.48 (19)C16—C17—H17B108.6
C10—C9—H9A108.9H17A—C17—H17B107.6
C8—C9—H9A108.9C17—C18—C19113.9 (2)
C10—C9—H9B108.9C17—C18—H18A108.8
C8—C9—H9B108.9C19—C18—H18A108.8
H9A—C9—H9B107.7C17—C18—H18B108.8
C9—C10—C11114.64 (19)C19—C18—H18B108.8
C9—C10—H10A108.6H18A—C18—H18B107.7
C11—C10—H10A108.6C18—C19—H19A109.5
C9—C10—H10B108.6C18—C19—H19B109.5
C11—C10—H10B108.6H19A—C19—H19B109.5
H10A—C10—H10B107.6C18—C19—H19C109.5
C12—C11—C10113.93 (19)H19A—C19—H19C109.5
C12—C11—H11A108.8H19B—C19—H19C109.5
C10—C11—H11A108.8H1X—O1—H1Y105 (3)
C12—C11—H11B108.8
C5—N1—C1—C2−1.4 (3)C6—C7—C8—C9179.69 (19)
C6—N1—C1—C2177.37 (19)C7—C8—C9—C10−179.33 (19)
N1—C1—C2—C30.6 (3)C8—C9—C10—C11179.1 (2)
C1—C2—C3—C40.6 (3)C9—C10—C11—C12179.6 (2)
C2—C3—C4—C5−1.1 (3)C10—C11—C12—C13179.72 (19)
C1—N1—C5—C40.9 (3)C11—C12—C13—C14179.6 (2)
C6—N1—C5—C4−177.9 (2)C12—C13—C14—C15−180.0 (2)
C3—C4—C5—N10.4 (3)C13—C14—C15—C16−179.9 (2)
C1—N1—C6—C7122.1 (2)C14—C15—C16—C17−179.78 (19)
C5—N1—C6—C7−59.1 (3)C15—C16—C17—C18179.4 (2)
N1—C6—C7—C8−177.00 (18)C16—C17—C18—C19−179.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1X···Br10.80 (3)2.53 (3)3.336 (2)178 (3)
O1—H1Y···Br1i0.77 (4)2.56 (4)3.330 (2)174 (3)
C1—H1···Br1ii0.952.873.577 (2)133
C3—H3···Br1iii0.952.853.783 (3)168
C4—H4···O1iii0.952.553.325 (3)138
C5—H5···O10.952.273.207 (3)171
C6—H6B···Br1i0.992.823.745 (2)155

Symmetry codes: (i) x+1, y, z; (ii) x+2, y−1, z; (iii) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2826).

References

  • Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology Oxford University Press.
  • González-Pérez, A., Varela, L. M., Garcia, M. & Rodriguez, J. R. (2006). J. Colloid Interface Sci.293, 213–221. [PubMed]
  • Israelachvili, J. N. (1985). Intermolecular and Surface Forces, 2nd ed. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Vongbupnimit, K., Noguchi, K. & Okuyama, K. (1995). Acta Cryst. C51, 1940–1941.
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography