PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1522.
Published online 2008 November 13. doi:  10.1107/S1600536808036362
PMCID: PMC2960010

catena-Poly[[(1,10-phenanthroline)manganese(II)]-μ3-5-methyl­isophthalato]

Abstract

In the title coupound, [Mn(C9H6O4)(C12H8N2)]n, the MnII ion is coordinated by two N atoms [Mn—N = 2.273 (3) and 2.305 (2) Å] from a 1,10-phenanthroline ligand and four O atoms [Mn—O = 2.112 (2)–2.343 (3) Å] from three 5-methyl­isophthalate (mip) ligands in a distorted octa­hedral geometry. Each mip dianion acts as a tetra­dentate ligand connecting three Mn ions. The crystal packing exhibits π–π inter­actions [3.599 (2)–3.755 (2) Å] between the centroids of the six-membered rings of neighbouring 1,10-phenanthroline ligands.

Related literature

For crystal structure of related polymeric compound, see Nie et al. (2001 [triangle]). For details of the coordination abilities of 1,3-benzene­dicarboxyl­ate derivatives, see: Pan et al. (2006 [triangle]); Yang et al. (2002 [triangle]); Ma et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1522-scheme1.jpg

Experimental

Crystal data

  • [Mn(C9H6O4)(C12H8N2)]
  • M r = 413.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1522-efi1.jpg
  • a = 9.2837 (11) Å
  • b = 10.3786 (13) Å
  • c = 18.824 (2) Å
  • β = 101.372 (2)°
  • V = 1778.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 295 (2) K
  • 0.19 × 0.10 × 0.07 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.847, T max = 0.948
  • 13275 measured reflections
  • 3313 independent reflections
  • 2230 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.097
  • S = 1.02
  • 3313 reflections
  • 254 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036362/cv2471sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036362/cv2471Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 20771054) and Henan Tackle Key Problems of Science and Technology (Nos. 072102270030 and 072102270034 ) and the Foundation of the Education Committee of Henan Province (Nos. 2006150017 and 2008A150018).

supplementary crystallographic information

Comment

The rational design and syntheses of novel coordination polymers have achieved considerable progress in the field of supramolecular chemistry and crystal engineering, owing to their potential applications as gas storage, sensor technology, separation processes, ion exchange, luminescene, magnetism, and catalysis, as well as due to their intriguing variety of architectures and topologies. It has also been proved that careful selection of an appropriate multidentate bridging ligands provides further impetus for the investigation of metal-organic structural architectures as well as potential technological applications. So multicarboxylate acid 1,3-benzenedicarboxylates (H2bdc) with variously oriented carboxylate groups have widely been utilized to construct coordination polymers (Pan et al., 2006; Yang et al., 2002; Ma et al., 2008). Herewith we present the title polymeric compound, (I).

The asymmetric unit of (I) contains one MnII cation, one phen (= 1,10-phenanthroline) ligand and one mip (H2mip=5-methylisophthalic acid) anion. Each Mn ion is octahedrally coordinated by two N atoms of one phen ligand and four oxygen atoms from three mip ligands (Fig. 1). The Mn-N bond lengths are 2.273 (3), 2.305 (2) A° and the Mn-O bond lengths are in the range of 2.112 (2) - 2.343 (3) A°, which are similiar to those reported for nearly isostructural complex (Nie et al., 2001). X-ray structure analysis reveals that (I) consists of 1D chains bridged by mip anions. Each mip anion acts as a tetradentate ligand connecting three Mn ions. Two carboxylic groups of mip ligand have two coordination modes, one bidentately bridging two Mn ions in a syn-syn fashion and the other chelating one Mn ion. Along the (110) direction, the Mn ions are bridged by the mip anions to generate stranded polymeric ribbon containing alternative 8- and 16-membered rings (Fig. 2). Two carboxylic groups bridge two Mn (II) ions to form an 8-membered ring and two mip ligands bridge two Mn (II) ions to form a 16-membered ring. Within the 8-membered ring and 16-membered ring, the Mn—Mn separations are 4.013 (3) and 7.62 (7) A°, respectively.

Close stacking of aromatic rings is observed in the complex, the distances between their centroids from neighboring phen ligands are 3.599 (2)-3.755 (2) A° (Table 1).

Experimental

A mixture of 5-methylisophthalic acid (0.2 mmol, 37 mg), phen (0.1 mmol, 21 mg) and Mn(OAc)2.4H2O (0.1 mmol, 24 mg) in distilled water (15 mL) and ethanol (1mL) was placed in a Teflon-lined stainless steel vessel, heated to 120 ° for 4 days, and then cooled to room temperature over 48 h. Yellow block crystals of (I) were obtained.

Refinement

The H atoms were positioned geometrically (C—H 0.93-0.96Å), and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C).

Figures

Fig. 1.
A portion of the title polymeric compound showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) x,-y+1,z-1/2].
Fig. 2.
A portion of the stranded polymeric ribbon in (I).

Crystal data

[Mn(C9H6O4)(C12H8N2)]F000 = 844
Mr = 413.28Dx = 1.544 Mg m3
Monoclinic, P2/cMo Kα radiation λ = 0.71073 Å
a = 9.2837 (11) ÅCell parameters from 1788 reflections
b = 10.3786 (13) Åθ = 2.3–19.8º
c = 18.824 (2) ŵ = 0.77 mm1
β = 101.372 (2)ºT = 295 (2) K
V = 1778.1 (4) Å3Block, yellow
Z = 40.19 × 0.10 × 0.07 mm

Data collection

Bruker SMART CCD area-detector diffractometer3313 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.056
T = 295(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −11→11
Tmin = 0.847, Tmax = 0.948k = −12→12
13275 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.097  w = 1/[σ2(Fo2) + (0.0334P)2 + 0.7839P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3313 reflectionsΔρmax = 0.26 e Å3
254 parametersΔρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.36904 (5)0.31882 (4)0.32302 (2)0.03865 (16)
O10.3711 (3)0.4040 (3)0.42907 (12)0.0685 (8)
O20.1789 (3)0.2896 (3)0.38683 (13)0.0757 (8)
O30.2707 (2)0.5464 (2)0.74411 (11)0.0480 (6)
O40.4110 (3)0.6197 (2)0.67041 (11)0.0548 (6)
N10.4764 (3)0.1298 (3)0.36551 (15)0.0520 (7)
N20.2489 (3)0.1543 (2)0.25312 (13)0.0443 (7)
C10.1932 (3)0.3809 (3)0.50355 (15)0.0385 (7)
C20.2745 (3)0.4529 (3)0.55968 (15)0.0362 (7)
H20.36550.48600.55540.043*
C30.2200 (3)0.4753 (3)0.62196 (15)0.0353 (7)
C40.0818 (3)0.4276 (3)0.62701 (16)0.0407 (8)
H40.04500.44370.66870.049*
C5−0.0017 (3)0.3569 (3)0.57130 (17)0.0441 (8)
C60.0567 (4)0.3342 (3)0.51018 (16)0.0449 (8)
H60.00260.28610.47240.054*
C70.2510 (4)0.3568 (3)0.43524 (16)0.0458 (8)
C80.3075 (4)0.5517 (3)0.68310 (16)0.0387 (7)
C9−0.1512 (4)0.3073 (4)0.5774 (2)0.0629 (10)
H9A−0.22360.34110.53830.094*
H9B−0.17360.33440.62280.094*
H9C−0.15160.21490.57510.094*
C100.5876 (4)0.1195 (4)0.4209 (2)0.0795 (13)
H100.63010.19420.44300.095*
C110.6440 (5)−0.0001 (5)0.4477 (3)0.1003 (17)
H110.7215−0.00450.48730.120*
C120.5841 (5)−0.1089 (5)0.4151 (3)0.0919 (15)
H120.6213−0.18870.43230.110*
C130.4680 (4)−0.1032 (4)0.3564 (2)0.0641 (11)
C140.3982 (5)−0.2131 (4)0.3178 (3)0.0758 (13)
H140.4325−0.29520.33180.091*
C150.2853 (5)−0.1995 (4)0.2624 (3)0.0759 (13)
H150.2421−0.27290.23900.091*
C160.2290 (4)−0.0773 (3)0.2381 (2)0.0576 (10)
C170.1094 (5)−0.0582 (5)0.1816 (2)0.0809 (13)
H170.0633−0.12880.15650.097*
C180.0596 (5)0.0622 (5)0.1628 (2)0.0765 (12)
H18−0.02220.07460.12600.092*
C190.1331 (4)0.1674 (4)0.19962 (17)0.0576 (10)
H190.09950.24990.18610.069*
C200.2954 (4)0.0339 (3)0.27317 (17)0.0428 (8)
C210.4156 (4)0.0209 (3)0.33261 (18)0.0475 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0482 (3)0.0372 (3)0.0286 (2)−0.0040 (2)0.0030 (2)−0.0008 (2)
O10.0677 (18)0.093 (2)0.0506 (15)−0.0197 (16)0.0247 (14)−0.0229 (14)
O20.0743 (18)0.103 (2)0.0479 (15)−0.0192 (16)0.0075 (14)−0.0337 (15)
O30.0631 (15)0.0485 (14)0.0331 (12)−0.0072 (11)0.0111 (11)−0.0046 (10)
O40.0553 (15)0.0618 (15)0.0442 (13)−0.0182 (13)0.0023 (11)−0.0025 (12)
N10.0442 (17)0.0498 (18)0.0580 (18)−0.0018 (14)0.0003 (15)0.0111 (15)
N20.0490 (17)0.0452 (18)0.0376 (15)−0.0063 (13)0.0055 (13)−0.0031 (12)
C10.0432 (19)0.0382 (18)0.0318 (16)0.0036 (15)0.0014 (14)0.0011 (14)
C20.0366 (17)0.0352 (17)0.0353 (16)0.0021 (14)0.0034 (14)0.0031 (13)
C30.0391 (18)0.0339 (17)0.0301 (16)0.0010 (14)0.0000 (14)0.0009 (13)
C40.0441 (19)0.0441 (19)0.0336 (17)0.0037 (15)0.0070 (15)0.0064 (14)
C50.0397 (19)0.0421 (19)0.046 (2)−0.0038 (15)−0.0016 (16)0.0100 (15)
C60.051 (2)0.0423 (19)0.0366 (18)−0.0012 (16)−0.0038 (16)−0.0023 (15)
C70.053 (2)0.049 (2)0.0314 (17)0.0088 (17)−0.0008 (16)−0.0032 (15)
C80.044 (2)0.0355 (18)0.0336 (17)0.0004 (15)0.0019 (15)0.0017 (14)
C90.045 (2)0.074 (3)0.066 (2)−0.016 (2)0.0016 (18)0.012 (2)
C100.068 (3)0.074 (3)0.082 (3)−0.001 (2)−0.018 (2)0.016 (2)
C110.077 (3)0.094 (4)0.113 (4)0.017 (3)−0.023 (3)0.038 (3)
C120.083 (3)0.069 (3)0.121 (4)0.025 (3)0.014 (3)0.040 (3)
C130.061 (3)0.050 (2)0.086 (3)0.013 (2)0.030 (2)0.017 (2)
C140.091 (3)0.031 (2)0.119 (4)0.009 (2)0.054 (3)0.007 (2)
C150.094 (3)0.046 (3)0.099 (3)−0.011 (2)0.045 (3)−0.018 (2)
C160.070 (3)0.042 (2)0.069 (3)−0.0120 (19)0.032 (2)−0.0112 (18)
C170.096 (4)0.071 (3)0.071 (3)−0.025 (3)0.006 (3)−0.026 (2)
C180.076 (3)0.086 (3)0.060 (3)−0.025 (3)−0.004 (2)−0.015 (2)
C190.064 (2)0.061 (2)0.043 (2)−0.012 (2)−0.0016 (19)−0.0031 (17)
C200.047 (2)0.040 (2)0.0439 (19)−0.0033 (16)0.0165 (16)−0.0064 (15)
C210.048 (2)0.041 (2)0.060 (2)−0.0015 (16)0.0276 (18)0.0062 (17)

Geometric parameters (Å, °)

Mn1—O3i2.112 (2)C5—C61.385 (4)
Mn1—O4ii2.120 (2)C5—C91.505 (4)
Mn1—O12.180 (2)C6—H60.9300
Mn1—N12.273 (3)C9—H9A0.9600
Mn1—N22.305 (2)C9—H9B0.9600
Mn1—O22.343 (3)C9—H9C0.9600
Mn1—C72.595 (3)C10—C111.402 (5)
O1—C71.244 (4)C10—H100.9300
O2—C71.235 (4)C11—C121.352 (6)
O3—C81.262 (3)C11—H110.9300
O3—Mn1iii2.112 (2)C12—C131.385 (6)
O4—C81.252 (3)C12—H120.9300
O4—Mn1ii2.120 (2)C13—C211.418 (5)
N1—C101.319 (4)C13—C141.435 (5)
N1—C211.357 (4)C14—C151.332 (5)
N2—C191.327 (4)C14—H140.9300
N2—C201.351 (4)C15—C161.414 (5)
C1—C61.385 (4)C15—H150.9300
C1—C21.390 (4)C16—C171.392 (5)
C1—C71.509 (4)C16—C201.410 (4)
C2—C31.385 (4)C17—C181.355 (6)
C2—H20.9300C17—H170.9300
C3—C41.396 (4)C18—C191.397 (5)
C3—C81.498 (4)C18—H180.9300
C4—C51.386 (4)C19—H190.9300
C4—H40.9300C20—C211.423 (4)
Cg1···Cg2iv3.709 (2)Cg3···Cg3iv3.599 (2)
Cg2···Cg2v3.755 (2)
O3i—Mn1—O4ii96.85 (9)O2—C7—C1119.3 (3)
O3i—Mn1—O1107.46 (10)O1—C7—C1119.4 (3)
O4ii—Mn1—O189.43 (9)O2—C7—Mn164.41 (18)
O3i—Mn1—N1156.59 (10)O1—C7—Mn156.88 (17)
O4ii—Mn1—N183.61 (9)C1—C7—Mn1175.9 (2)
O1—Mn1—N195.94 (11)O4—C8—O3123.6 (3)
O3i—Mn1—N289.75 (9)O4—C8—C3118.1 (3)
O4ii—Mn1—N2127.49 (9)O3—C8—C3118.3 (3)
O1—Mn1—N2137.66 (10)C5—C9—H9A109.5
N1—Mn1—N272.00 (10)C5—C9—H9B109.5
O3i—Mn1—O2100.46 (9)H9A—C9—H9B109.5
O4ii—Mn1—O2145.47 (8)C5—C9—H9C109.5
O1—Mn1—O256.93 (9)H9A—C9—H9C109.5
N1—Mn1—O291.74 (10)H9B—C9—H9C109.5
N2—Mn1—O282.42 (9)N1—C10—C11122.4 (4)
O3i—Mn1—C7106.19 (9)N1—C10—H10118.8
O4ii—Mn1—C7117.61 (10)C11—C10—H10118.8
O1—Mn1—C728.55 (9)C12—C11—C10119.1 (4)
N1—Mn1—C794.06 (10)C12—C11—H11120.5
N2—Mn1—C7110.05 (10)C10—C11—H11120.5
O2—Mn1—C728.38 (9)C11—C12—C13120.8 (4)
C7—O1—Mn194.6 (2)C11—C12—H12119.6
C7—O2—Mn187.2 (2)C13—C12—H12119.6
C8—O3—Mn1iii117.0 (2)C12—C13—C21117.1 (4)
C8—O4—Mn1ii157.6 (2)C12—C13—C14124.9 (4)
C10—N1—C21118.9 (3)C21—C13—C14118.0 (4)
C10—N1—Mn1124.7 (3)C15—C14—C13121.3 (4)
C21—N1—Mn1116.4 (2)C15—C14—H14119.4
C19—N2—C20118.2 (3)C13—C14—H14119.4
C19—N2—Mn1125.9 (2)C14—C15—C16122.1 (4)
C20—N2—Mn1115.7 (2)C14—C15—H15119.0
C6—C1—C2119.3 (3)C16—C15—H15119.0
C6—C1—C7120.3 (3)C17—C16—C20116.8 (4)
C2—C1—C7120.4 (3)C17—C16—C15124.3 (4)
C3—C2—C1120.0 (3)C20—C16—C15118.9 (4)
C3—C2—H2120.0C18—C17—C16120.7 (4)
C1—C2—H2120.0C18—C17—H17119.6
C2—C3—C4119.5 (3)C16—C17—H17119.6
C2—C3—C8120.4 (3)C17—C18—C19118.8 (4)
C4—C3—C8120.1 (3)C17—C18—H18120.6
C5—C4—C3121.4 (3)C19—C18—H18120.6
C5—C4—H4119.3N2—C19—C18122.7 (4)
C3—C4—H4119.3N2—C19—H19118.6
C6—C5—C4117.8 (3)C18—C19—H19118.6
C6—C5—C9121.6 (3)N2—C20—C16122.7 (3)
C4—C5—C9120.6 (3)N2—C20—C21117.8 (3)
C5—C6—C1122.0 (3)C16—C20—C21119.5 (3)
C5—C6—H6119.0N1—C21—C13121.8 (3)
C1—C6—H6119.0N1—C21—C20118.1 (3)
O2—C7—O1121.3 (3)C13—C21—C20120.1 (3)
O3i—Mn1—O1—C791.9 (2)O4ii—Mn1—C7—O2−171.05 (19)
O4ii—Mn1—O1—C7−171.1 (2)O1—Mn1—C7—O2178.9 (3)
N1—Mn1—O1—C7−87.6 (2)N1—Mn1—C7—O2−86.1 (2)
N2—Mn1—O1—C7−17.9 (3)N2—Mn1—C7—O2−13.8 (2)
O2—Mn1—O1—C70.6 (2)O3i—Mn1—C7—O1−96.9 (2)
O3i—Mn1—O2—C7−104.8 (2)O4ii—Mn1—C7—O110.1 (2)
O4ii—Mn1—O2—C714.1 (3)N1—Mn1—C7—O195.0 (2)
O1—Mn1—O2—C7−0.6 (2)N2—Mn1—C7—O1167.3 (2)
N1—Mn1—O2—C795.3 (2)O2—Mn1—C7—O1−178.9 (3)
N2—Mn1—O2—C7166.9 (2)Mn1ii—O4—C8—O367.5 (7)
O3i—Mn1—N1—C10139.9 (3)Mn1ii—O4—C8—C3−114.3 (5)
O4ii—Mn1—N1—C1047.4 (3)Mn1iii—O3—C8—O49.6 (4)
O1—Mn1—N1—C10−41.4 (3)Mn1iii—O3—C8—C3−168.61 (19)
N2—Mn1—N1—C10−179.7 (3)C2—C3—C8—O417.0 (4)
O2—Mn1—N1—C10−98.3 (3)C4—C3—C8—O4−162.1 (3)
C7—Mn1—N1—C10−70.0 (3)C2—C3—C8—O3−164.7 (3)
O3i—Mn1—N1—C21−43.1 (4)C4—C3—C8—O316.1 (4)
O4ii—Mn1—N1—C21−135.6 (2)C21—N1—C10—C11−0.9 (6)
O1—Mn1—N1—C21135.7 (2)Mn1—N1—C10—C11176.0 (3)
N2—Mn1—N1—C21−2.7 (2)N1—C10—C11—C121.0 (8)
O2—Mn1—N1—C2178.8 (2)C10—C11—C12—C13−0.4 (8)
C7—Mn1—N1—C21107.1 (2)C11—C12—C13—C21−0.2 (7)
O3i—Mn1—N2—C19−17.7 (3)C11—C12—C13—C14179.4 (4)
O4ii—Mn1—N2—C19−116.2 (3)C12—C13—C14—C15178.9 (4)
O1—Mn1—N2—C1998.4 (3)C21—C13—C14—C15−1.6 (6)
N1—Mn1—N2—C19177.2 (3)C13—C14—C15—C160.6 (6)
O2—Mn1—N2—C1982.8 (3)C14—C15—C16—C17−178.6 (4)
C7—Mn1—N2—C1989.4 (3)C14—C15—C16—C200.6 (6)
O3i—Mn1—N2—C20167.8 (2)C20—C16—C17—C18−1.0 (6)
O4ii—Mn1—N2—C2069.3 (2)C15—C16—C17—C18178.2 (4)
O1—Mn1—N2—C20−76.1 (3)C16—C17—C18—C192.0 (7)
N1—Mn1—N2—C202.7 (2)C20—N2—C19—C18−1.1 (5)
O2—Mn1—N2—C20−91.7 (2)Mn1—N2—C19—C18−175.5 (3)
C7—Mn1—N2—C20−85.1 (2)C17—C18—C19—N2−0.9 (6)
C6—C1—C2—C31.2 (4)C19—N2—C20—C162.1 (5)
C7—C1—C2—C3179.5 (3)Mn1—N2—C20—C16177.1 (2)
C1—C2—C3—C4−1.5 (4)C19—N2—C20—C21−177.3 (3)
C1—C2—C3—C8179.4 (3)Mn1—N2—C20—C21−2.4 (4)
C2—C3—C4—C50.8 (4)C17—C16—C20—N2−1.1 (5)
C8—C3—C4—C5179.9 (3)C15—C16—C20—N2179.6 (3)
C3—C4—C5—C60.3 (4)C17—C16—C20—C21178.4 (3)
C3—C4—C5—C9−179.4 (3)C15—C16—C20—C21−0.9 (5)
C4—C5—C6—C1−0.6 (5)C10—N1—C21—C130.3 (5)
C9—C5—C6—C1179.1 (3)Mn1—N1—C21—C13−176.9 (2)
C2—C1—C6—C5−0.1 (5)C10—N1—C21—C20179.7 (3)
C7—C1—C6—C5−178.4 (3)Mn1—N1—C21—C202.5 (4)
Mn1—O2—C7—O11.1 (3)C12—C13—C21—N10.3 (5)
Mn1—O2—C7—C1−178.2 (3)C14—C13—C21—N1−179.3 (3)
Mn1—O1—C7—O2−1.2 (4)C12—C13—C21—C20−179.2 (3)
Mn1—O1—C7—C1178.1 (2)C14—C13—C21—C201.3 (5)
C6—C1—C7—O2−3.6 (5)N2—C20—C21—N10.0 (4)
C2—C1—C7—O2178.0 (3)C16—C20—C21—N1−179.5 (3)
C6—C1—C7—O1177.0 (3)N2—C20—C21—C13179.4 (3)
C2—C1—C7—O1−1.3 (5)C16—C20—C21—C13−0.1 (5)
O3i—Mn1—C7—O282.0 (2)

Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1, z+1/2; (iv) −x+1, y, −z+1/2; (v) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2471).

References

  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Ma, C.-B., Chen, C.-N., Liu, Q.-T., Liao, D.-Z. & Li, L.-C. (2008). Eur. J. Inorg. Chem pp. 1865–1870.
  • Nie, J.-J., Liu, L.-J., Luo, Y. & Xu, D.-J. (2001). J. Coord. Chem 53, 365–371.
  • Pan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc 128, 4180–4181. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, S.-Y., Long, L.-S., Huang, R.-B. & Zheng, L.-S. (2002). Chem. Commun pp. 472–473. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography