PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2273.
Published online 2008 November 8. doi:  10.1107/S1600536808035307
PMCID: PMC2960008

N,N′-Bis(4-chloro­benzyl­idene)-2,2-dimethyl­propane-1,3-diamine

Abstract

The title compound, C19H20Cl2N2, is a potential bidentate Schiff base ligand. Intra­molecular C—H(...)N hydrogen bonds form five-membered rings, generating S(5) ring motifs. Each imino functional group is coplanar with its adjacent benzene ring; the two benzene rings form a dihedral angle of 51.30 (4)°. An inter­esting feature of the crystal structure is weak inter­molecular Cl(...)Cl [3.4752 (4) Å] and Cl(...)N [3.2927 (9) Å] inter­actions. Inter­molecular Cl(...)N inter­actions link mol­ecules into dimers with R22(22) ring motifs. The crystal structure is further stabilized by weak π–π [centroid–centroid distances = 3.6970 (6)–3.8560 (6) Å] inter­actions.

Related literature

For hydrogen-bond motifs, see Bernstein et al. (1995 [triangle]). For related structures see, for example: Li et al. (2005 [triangle]); Bomfim et al. (2005 [triangle]); Glidewell et al. (2005 [triangle], 2006 [triangle]); Sun et al. (2004 [triangle]); Fun et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2273-scheme1.jpg

Experimental

Crystal data

  • C19H20Cl2N2
  • M r = 347.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2273-efi1.jpg
  • a = 19.6392 (3) Å
  • b = 9.3275 (2) Å
  • c = 9.7841 (2) Å
  • β = 92.213 (1)°
  • V = 1790.96 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.36 mm−1
  • T = 100 (1) K
  • 0.51 × 0.35 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.836, T max = 0.966
  • 21670 measured reflections
  • 6419 independent reflections
  • 5273 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.095
  • S = 1.03
  • 6419 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035307/tk2319sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035307/tk2319Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks Payame Noor University for financial support.

supplementary crystallographic information

Comment

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Structures of Schiff-base compounds derived from substituted benzaldehydes and closely related to the title compound, (I), have been reported previously (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

In (I), Fig. 1, each imino functional group is co-planar with its adjacent benzene ring. Intramolecular C—H···N hydrogen bonds form five-membered rings, Fig. 1, producing S(5) ring motifs (Bernstein et al., 1995). The two benzene rings form a dihedral angle of 51.30 (4)°. The interesting feature of the crystal structure is the presence of weak intermolecular Cl···Cl [3.4852 (3) Å; symmetry code: x, 1 - y, -1/2 + z] and Cl···N [3.2927 (9) Å; symmetry code: -x, 1 - y, 1 - z] interactions. The intermolecular Cl···N interactions link neighbouring molecules into dimers with R22(22) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by weak intermolecular π–π interactions [Cg1···Cg1= 3.8560 (6) Å; symmetry code: 1 - x, 1 - y, 1 - z; Cg2···Cg2 = 3.6970 (6) Å; symmetry code: -x, 1 - y, 1 - z] (Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

Experimental

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution of (I) held at room temperature.

Refinement

All H atoms were included in the riding model approximation with C—H = 0.93 - 0.97 Å, and with U(H) = 1.2–1.5 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing atom labels and 50% probability ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.

Crystal data

C19H20Cl2N2F000 = 728
Mr = 347.27Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8119 reflections
a = 19.6392 (3) Åθ = 3.0–38.9º
b = 9.3275 (2) ŵ = 0.36 mm1
c = 9.7841 (2) ÅT = 100 (1) K
β = 92.213 (1)ºPlate, colourless
V = 1790.96 (6) Å30.51 × 0.35 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6419 independent reflections
Radiation source: fine-focus sealed tube5273 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 100.0(1) Kθmax = 32.5º
[var phi] and ω scansθmin = 1.0º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −29→29
Tmin = 0.836, Tmax = 0.966k = −14→12
21670 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0434P)2 + 0.5329P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6419 reflectionsΔρmax = 0.38 e Å3
208 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.497643 (14)0.49166 (3)0.17717 (3)0.02553 (7)
Cl2−0.166144 (13)0.43828 (3)0.54241 (3)0.02640 (7)
N10.28500 (4)0.54904 (10)0.70403 (9)0.01950 (17)
N20.14528 (4)0.37002 (10)0.85655 (9)0.01864 (17)
C10.35398 (5)0.47808 (13)0.45572 (11)0.0216 (2)
H1A0.31550.42380.47310.026*
C20.39180 (6)0.44677 (13)0.34258 (11)0.0226 (2)
H2A0.37910.37200.28420.027*
C30.44914 (5)0.52935 (12)0.31802 (11)0.01962 (19)
C40.46927 (5)0.64046 (12)0.40359 (11)0.0208 (2)
H4A0.50800.69390.38630.025*
C50.43069 (5)0.67111 (12)0.51594 (11)0.01929 (19)
H5A0.44340.74660.57350.023*
C60.37302 (5)0.59009 (11)0.54371 (10)0.01710 (18)
C70.33470 (5)0.62450 (12)0.66609 (11)0.01815 (19)
H7A0.34740.70460.71760.022*
C80.25179 (5)0.59532 (12)0.82751 (11)0.0202 (2)
H8A0.20460.61870.80480.024*
H8B0.27400.68130.86280.024*
C90.25474 (5)0.47832 (12)0.93875 (11)0.01860 (19)
C100.21738 (5)0.34242 (12)0.88813 (11)0.01881 (19)
H10A0.23860.30700.80680.023*
H10B0.22160.26880.95790.023*
C110.12219 (5)0.33583 (11)0.73837 (11)0.01765 (18)
H11A0.15150.29360.67770.021*
C120.05057 (5)0.36042 (11)0.69311 (10)0.01656 (18)
C130.00695 (5)0.44318 (12)0.77071 (11)0.01855 (19)
H13A0.02300.48320.85290.022*
C14−0.06007 (5)0.46587 (12)0.72583 (11)0.01985 (19)
H14A−0.08910.52070.77740.024*
C15−0.08314 (5)0.40546 (12)0.60260 (11)0.01940 (19)
C16−0.04087 (5)0.32318 (12)0.52386 (11)0.0204 (2)
H16A−0.05710.28320.44180.024*
C170.02632 (5)0.30141 (12)0.56973 (11)0.01898 (19)
H17A0.05530.24700.51750.023*
C180.32900 (5)0.43799 (14)0.97383 (12)0.0249 (2)
H18A0.35340.52141.00580.037*
H18B0.34970.40140.89370.037*
H18C0.33040.36601.04400.037*
C190.22142 (6)0.53832 (14)1.06574 (12)0.0261 (2)
H19A0.24520.62311.09600.039*
H19B0.22350.46781.13720.039*
H19C0.17470.56161.04350.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.02940 (13)0.02639 (15)0.02128 (12)0.00830 (10)0.00692 (10)0.00370 (10)
Cl20.01662 (11)0.02663 (15)0.03566 (15)0.00011 (9)−0.00260 (9)0.00411 (11)
N10.0189 (4)0.0204 (4)0.0192 (4)−0.0005 (3)0.0014 (3)0.0005 (3)
N20.0146 (3)0.0200 (4)0.0215 (4)−0.0014 (3)0.0025 (3)0.0000 (3)
C10.0202 (4)0.0231 (5)0.0214 (5)−0.0044 (4)0.0001 (4)−0.0006 (4)
C20.0251 (5)0.0231 (5)0.0197 (5)−0.0028 (4)−0.0007 (4)−0.0026 (4)
C30.0221 (4)0.0194 (5)0.0175 (4)0.0048 (4)0.0024 (4)0.0038 (4)
C40.0199 (4)0.0176 (5)0.0250 (5)−0.0003 (4)0.0039 (4)0.0043 (4)
C50.0195 (4)0.0154 (5)0.0230 (5)−0.0013 (3)0.0012 (4)0.0006 (4)
C60.0169 (4)0.0167 (5)0.0177 (4)0.0001 (3)−0.0004 (3)0.0023 (4)
C70.0178 (4)0.0174 (5)0.0191 (4)0.0002 (3)−0.0002 (3)0.0007 (4)
C80.0185 (4)0.0197 (5)0.0226 (5)−0.0003 (4)0.0044 (4)−0.0008 (4)
C90.0162 (4)0.0215 (5)0.0182 (4)−0.0019 (3)0.0019 (3)−0.0015 (4)
C100.0158 (4)0.0191 (5)0.0216 (5)0.0002 (3)0.0018 (3)0.0000 (4)
C110.0165 (4)0.0160 (5)0.0207 (5)0.0005 (3)0.0049 (3)0.0005 (4)
C120.0161 (4)0.0153 (4)0.0184 (4)−0.0005 (3)0.0028 (3)0.0019 (3)
C130.0190 (4)0.0185 (5)0.0183 (5)0.0007 (3)0.0033 (3)−0.0006 (4)
C140.0180 (4)0.0189 (5)0.0230 (5)0.0017 (4)0.0046 (4)0.0015 (4)
C150.0156 (4)0.0177 (5)0.0249 (5)−0.0010 (3)0.0005 (3)0.0049 (4)
C160.0215 (4)0.0195 (5)0.0202 (5)−0.0020 (4)−0.0003 (4)−0.0008 (4)
C170.0194 (4)0.0180 (5)0.0197 (5)0.0007 (3)0.0029 (3)−0.0006 (4)
C180.0186 (4)0.0303 (6)0.0255 (5)−0.0024 (4)−0.0025 (4)0.0008 (4)
C190.0272 (5)0.0292 (6)0.0222 (5)−0.0042 (4)0.0065 (4)−0.0055 (4)

Geometric parameters (Å, °)

Cl1—C31.7411 (11)C9—C191.5323 (15)
Cl2—C151.7390 (10)C9—C101.5370 (15)
N1—C71.2703 (13)C10—H10A0.9700
N1—C81.4602 (14)C10—H10B0.9700
N2—C111.2664 (14)C11—C121.4761 (14)
N2—C101.4603 (13)C11—H11A0.9300
C1—C21.3876 (15)C12—C171.3939 (15)
C1—C61.3956 (15)C12—C131.3987 (14)
C1—H1A0.9300C13—C141.3876 (14)
C2—C31.3929 (15)C13—H13A0.9300
C2—H2A0.9300C14—C151.3908 (16)
C3—C41.3805 (16)C14—H14A0.9300
C4—C51.3886 (14)C15—C161.3860 (15)
C4—H4A0.9300C16—C171.3921 (14)
C5—C61.3970 (14)C16—H16A0.9300
C5—H5A0.9300C17—H17A0.9300
C6—C71.4741 (14)C18—H18A0.9600
C7—H7A0.9300C18—H18B0.9600
C8—C91.5408 (16)C18—H18C0.9600
C8—H8A0.9700C19—H19A0.9600
C8—H8B0.9700C19—H19B0.9600
C9—C181.5322 (15)C19—H19C0.9600
C7—N1—C8116.79 (9)C9—C10—H10A109.3
C11—N2—C10117.31 (9)N2—C10—H10B109.3
C2—C1—C6120.72 (10)C9—C10—H10B109.3
C2—C1—H1A119.6H10A—C10—H10B107.9
C6—C1—H1A119.6N2—C11—C12122.56 (9)
C1—C2—C3118.84 (10)N2—C11—H11A118.7
C1—C2—H2A120.6C12—C11—H11A118.7
C3—C2—H2A120.6C17—C12—C13119.48 (9)
C4—C3—C2121.67 (10)C17—C12—C11119.22 (9)
C4—C3—Cl1118.62 (8)C13—C12—C11121.30 (9)
C2—C3—Cl1119.71 (9)C14—C13—C12120.38 (10)
C3—C4—C5118.84 (10)C14—C13—H13A119.8
C3—C4—H4A120.6C12—C13—H13A119.8
C5—C4—H4A120.6C13—C14—C15119.07 (10)
C4—C5—C6120.92 (10)C13—C14—H14A120.5
C4—C5—H5A119.5C15—C14—H14A120.5
C6—C5—H5A119.5C16—C15—C14121.61 (9)
C1—C6—C5119.00 (9)C16—C15—Cl2118.88 (9)
C1—C6—C7122.08 (9)C14—C15—Cl2119.47 (8)
C5—C6—C7118.91 (9)C15—C16—C17118.83 (10)
N1—C7—C6122.61 (10)C15—C16—H16A120.6
N1—C7—H7A118.7C17—C16—H16A120.6
C6—C7—H7A118.7C16—C17—C12120.63 (9)
N1—C8—C9111.67 (9)C16—C17—H17A119.7
N1—C8—H8A109.3C12—C17—H17A119.7
C9—C8—H8A109.3C9—C18—H18A109.5
N1—C8—H8B109.3C9—C18—H18B109.5
C9—C8—H8B109.3H18A—C18—H18B109.5
H8A—C8—H8B107.9C9—C18—H18C109.5
C18—C9—C19109.91 (9)H18A—C18—H18C109.5
C18—C9—C10107.95 (9)H18B—C18—H18C109.5
C19—C9—C10110.43 (8)C9—C19—H19A109.5
C18—C9—C8109.97 (8)C9—C19—H19B109.5
C19—C9—C8107.97 (9)H19A—C19—H19B109.5
C10—C9—C8110.61 (9)C9—C19—H19C109.5
N2—C10—C9111.70 (9)H19A—C19—H19C109.5
N2—C10—H10A109.3H19B—C19—H19C109.5
C6—C1—C2—C3−0.13 (17)C11—N2—C10—C9125.72 (10)
C1—C2—C3—C40.35 (17)C18—C9—C10—N2178.07 (9)
C1—C2—C3—Cl1179.70 (9)C19—C9—C10—N257.90 (12)
C2—C3—C4—C5−0.74 (17)C8—C9—C10—N2−61.57 (11)
Cl1—C3—C4—C5179.89 (8)C10—N2—C11—C12−178.94 (9)
C3—C4—C5—C60.93 (16)N2—C11—C12—C17−170.66 (10)
C2—C1—C6—C50.31 (17)N2—C11—C12—C1310.16 (16)
C2—C1—C6—C7−178.88 (10)C17—C12—C13—C140.35 (16)
C4—C5—C6—C1−0.72 (16)C11—C12—C13—C14179.52 (10)
C4—C5—C6—C7178.50 (10)C12—C13—C14—C15−0.14 (16)
C8—N1—C7—C6179.80 (9)C13—C14—C15—C160.08 (16)
C1—C6—C7—N14.79 (16)C13—C14—C15—Cl2−177.78 (8)
C5—C6—C7—N1−174.40 (10)C14—C15—C16—C17−0.23 (16)
C7—N1—C8—C9−120.74 (10)Cl2—C15—C16—C17177.64 (8)
N1—C8—C9—C1857.83 (12)C15—C16—C17—C120.44 (16)
N1—C8—C9—C19177.75 (8)C13—C12—C17—C16−0.51 (16)
N1—C8—C9—C10−61.31 (11)C11—C12—C17—C16−179.70 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C18—H18B···N10.962.602.9346 (15)101
C19—H19C···N20.962.612.9416 (15)101

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2319).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst.C61, o53–o56. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fun, H.-K., Kargar, H. & Kia, R. (2008). Acta Cryst.E64, o1308. [PMC free article] [PubMed]
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst.E61, o3551–o3553.
  • Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst.C62, o1–o4. [PubMed]
  • Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst.E61, o4156–o4157.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst.E60, o1707–o1708.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography