PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): i81.
Published online 2008 November 13. doi:  10.1107/S1600536808036295
PMCID: PMC2960005

NdO(NO3)

Abstract

The title compound, neodymium(III) oxide nitrate, which is isostructural with LaO(NO3), arose from a solvothermal reaction. The Nd ion (site symmetry m) is ten-coordinated by eight O atoms of NO3 groups and two μ2-oxide ions. A three-dimensional structure is constructed by the inter­connection of NdO10 polyhedra. The oxide ion and the N atom and one of the nitrate O atoms possess site symmetry m.

Related literature

For background, see: Gobichon et al. (1997 [triangle]); Guillou et al. (1994 [triangle]). For an isostructural compound, see: Zhang et al. (2004 [triangle]).

Experimental

Crystal data

  • NdO(NO3)
  • M r = 222.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00i81-efi5.jpg
  • a = 7.5233 (15) Å
  • b = 5.1618 (10) Å
  • c = 8.7157 (17) Å
  • V = 338.46 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 15.19 mm−1
  • T = 293 (2) K
  • 0.16 × 0.14 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.107, T max = 0.158
  • 2962 measured reflections
  • 410 independent reflections
  • 405 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.068
  • S = 1.81
  • 410 reflections
  • 34 parameters
  • 30 restraints
  • Δρmax = 1.02 e Å−3
  • Δρmin = −1.42 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 2002 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2000 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036295/hb2833sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036295/hb2833Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, Chinese Education Ministry (grant No. 20071108).

supplementary crystallographic information

Comment

The lanthanide nitrates are not only applied for separation of the lanthanide elements but also widely utilized as the precursor of organic or inorganic synthesis. Thus, a large number of lanthanide nitrates are structurally determinated besides a few anhydrous examples (Guillou, et al., 1994; Zhang, et al., 2004; Gobichon, et al., 1997). In this work, the title compound, (I), an anhydrous neodymium oxide nitrate, was unexpectedly obtained under solvothermal conditions in a mixed solvent of H2O and DMF.

The asymmetric unit of (I) is consisted of 0.5 N d, 0.5 O and 0.5 NO3 (Fig. 1). All oxygen atoms of NO3 group are coordinated to the Nd ions. Two oxygen atoms of nitrate group (O1 and O1vi) are coordinated to three different Nd ions with Nd—O distances in the range of 2.694–2.826 A°, and the last one (O3) is coordinated to two different Nd ions with Nd—O distance of 2.636 A° (Table 1). A µ2-O (O2) exists in the structure of (I) with Nd—O distances of 2.434 and 2.458 A° and corresponding Nd—O2—Nd bond angles of 110.72°. These two Nd—O distances are significantly shorter than the others Nd—O distances. Then, the linkages of two adjacent Nd ions are in two modes, of which one is via Nd-µ2-O—Nd bonds with Nd—Nd distance of 4.0254 (8)A° and the other via Nd—O(NO3)-Nd bonds. A three-dimensional framework constructed by the interconnections of NdO10 polyhedra is shown in Fig. 2.

There are two different structures with the same molecular formula of LnONO3, such as LnONO3(Ln=Y, La) in the P4/mmm space group and LaONO3 in Pnma space group. In this work, NdONO3 is the isostructural compound of the reported LaONO3 (Zhang, et al., 2004).

Experimental

Isonicotine (0.123 g, 1.0 mmol) was added to a mixed solution of 5 ml H2O/3 ml DMF. After being stirred for 5 h, the isonicotine was partially dissovled with pH = 6.0. Then, Nd(NO3)3.6H2O (0.220 g, 0.5 mmol) was added and stirred for 7 h. The molar ratio of Nd(NO3)3.6H2O: isonicotine was 1:2. Finally, the solution with pH = 7.0 was sealed into 23 ml autoclave and heated up to 438 K for 4 days. After naturally cooling to room temperature, colourless prisms of (I) were obtained.

Figures

Fig. 1.
A fragment of the structure of (I), showing the Nd coordination sphere and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -1/2 + x, y, 1.5 - z; (ii) x, 0.5 - y, z; (iii) 1 - x, 1/2 + y, 2 - z; (iv) 1 - x, -y, 2 - z; (v) -1/2 ...
Fig. 2.
A packing diagram for (I), viewed along [010].

Crystal data

NdO(NO3)F000 = 396
Mr = 222.25Dx = 4.362 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2000 reflections
a = 7.5233 (15) Åθ = 3.6–27.0º
b = 5.1618 (10) ŵ = 15.19 mm1
c = 8.7157 (17) ÅT = 293 (2) K
V = 338.46 (11) Å3Prism, colourless
Z = 40.16 × 0.14 × 0.12 mm

Data collection

Rigaku R-AXIS RAPID diffractometer410 independent reflections
Radiation source: fine-focus sealed tube405 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
Detector resolution: 10.00 pixels mm-1θmax = 27.0º
T = 293(2) Kθmin = 3.6º
ω scansh = −9→8
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −5→6
Tmin = 0.107, Tmax = 0.158l = −11→11
2962 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024  w = 1/[σ2(Fo2) + (0.0285P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max = 0.002
S = 1.81Δρmax = 1.02 e Å3
410 reflectionsΔρmin = −1.42 e Å3
34 parametersExtinction correction: none
30 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Nd10.35352 (4)0.25000.83222 (4)0.0055 (2)
O10.6501 (4)−0.0288 (7)0.8846 (4)0.0047 (7)
O20.0359 (6)0.25000.8985 (6)0.0080 (10)
O30.7902 (7)−0.25000.6964 (6)0.0088 (10)
N10.6934 (10)−0.25000.8195 (7)0.0120 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Nd10.0051 (3)0.0052 (3)0.0061 (3)0.0000.00018 (11)0.000
O10.0054 (10)0.0043 (10)0.0045 (10)0.0002 (7)0.0004 (7)−0.0001 (8)
O20.0072 (12)0.0091 (12)0.0076 (13)0.000−0.0001 (9)0.000
O30.0091 (13)0.0088 (13)0.0086 (12)0.0000.0022 (9)0.000
N10.0121 (15)0.0120 (15)0.0121 (15)0.000−0.0005 (9)0.000

Geometric parameters (Å, °)

Nd1—O2i2.434 (5)Nd1—Nd1ii4.0254 (8)
Nd1—O22.458 (5)Nd1—Nd1i4.0254 (8)
Nd1—O3ii2.6362 (12)O1—N11.316 (5)
Nd1—O3iii2.6362 (12)O1—Nd1vi2.719 (4)
Nd1—O1iv2.694 (3)O1—Nd1i2.826 (4)
Nd1—O12.694 (3)O2—Nd1ii2.434 (5)
Nd1—O1v2.719 (4)O3—N11.297 (8)
Nd1—O1vi2.719 (4)O3—Nd1i2.6362 (12)
Nd1—O1ii2.826 (4)O3—Nd1viii2.6362 (12)
Nd1—O1vii2.826 (4)N1—O1ix1.316 (5)
O2i—Nd1—O2137.90 (13)O3ii—Nd1—O1ii48.73 (13)
O2i—Nd1—O3ii91.36 (11)O3iii—Nd1—O1ii109.73 (13)
O2—Nd1—O3ii81.18 (12)O1iv—Nd1—O1ii146.51 (6)
O2i—Nd1—O3iii91.36 (11)O1—Nd1—O1ii106.85 (12)
O2—Nd1—O3iii81.18 (12)O1v—Nd1—O1ii144.63 (7)
O3ii—Nd1—O3iii156.5 (2)O1vi—Nd1—O1ii112.81 (4)
O2i—Nd1—O1iv70.92 (12)O2i—Nd1—O1vii75.69 (11)
O2—Nd1—O1iv139.92 (10)O2—Nd1—O1vii68.33 (11)
O3ii—Nd1—O1iv133.51 (14)O3ii—Nd1—O1vii109.73 (13)
O3iii—Nd1—O1iv69.06 (14)O3iii—Nd1—O1vii48.73 (13)
O2i—Nd1—O170.92 (12)O1iv—Nd1—O1vii106.85 (12)
O2—Nd1—O1139.92 (10)O1—Nd1—O1vii146.51 (6)
O3ii—Nd1—O169.06 (14)O1v—Nd1—O1vii112.81 (4)
O3iii—Nd1—O1133.51 (14)O1vi—Nd1—O1vii144.63 (7)
O1iv—Nd1—O164.57 (15)O1ii—Nd1—O1vii61.23 (15)
O2i—Nd1—O1v139.04 (10)Nd1ii—Nd1—Nd1i138.29 (2)
O2—Nd1—O1v77.12 (12)N1—O1—Nd1126.5 (4)
O3ii—Nd1—O1v119.67 (13)N1—O1—Nd1vi91.7 (3)
O3iii—Nd1—O1v70.90 (13)Nd1—O1—Nd1vi111.71 (11)
O1iv—Nd1—O1v68.29 (11)N1—O1—Nd1i91.1 (3)
O1—Nd1—O1v94.51 (7)Nd1—O1—Nd1i93.62 (12)
O2i—Nd1—O1vi139.04 (10)Nd1vi—O1—Nd1i145.72 (12)
O2—Nd1—O1vi77.12 (12)Nd1ii—O2—Nd1110.73 (19)
O3ii—Nd1—O1vi70.90 (13)N1—O3—Nd1i100.35 (11)
O3iii—Nd1—O1vi119.67 (13)N1—O3—Nd1viii100.35 (11)
O1iv—Nd1—O1vi94.51 (7)Nd1i—O3—Nd1viii156.5 (2)
O1—Nd1—O1vi68.29 (11)O3—N1—O1119.7 (3)
O1v—Nd1—O1vi49.66 (16)O3—N1—O1ix119.7 (3)
O2i—Nd1—O1ii75.69 (11)O1—N1—O1ix120.4 (6)
O2—Nd1—O1ii68.33 (12)

Symmetry codes: (i) x+1/2, y, −z+3/2; (ii) x−1/2, y, −z+3/2; (iii) x−1/2, y+1, −z+3/2; (iv) x, −y+1/2, z; (v) −x+1, y+1/2, −z+2; (vi) −x+1, −y, −z+2; (vii) x−1/2, −y+1/2, −z+3/2; (viii) x+1/2, y−1, −z+3/2; (ix) x, −y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2833).

References

  • Brandenburg, K. (2000). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Gobichon, A. E., Auffrédic, J. P. & Louër, D. (1997). Solid State Ionics, 93, 51–64.
  • Guillou, N., Auffrédic, J. P. & Louër, D. (1994). J. Solid State Chem.112, 45–52.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (2002). PROCESS-AUTO and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun.7, 889–892.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography