PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1562.
Published online 2008 November 20. doi:  10.1107/S1600536808037525
PMCID: PMC2960000

Poly[μ-aqua-[μ-1,1′-(butane-1,4-di­yl)diimidazole]bis­(μ4-naphthalene-1,4-dicarboxyl­ato)dicadmium(II)]

Abstract

In the title compound, [Cd2(C12H6O4)2(C10H14N4)(H2O)]n, the coordination polyhedron around each CdII ion is a distorted CdNO5 octa­hedron. The water O atom has site symmetry 2 and the complete 1,1′-(butane-1,4-di­yl)diimidazole (L) ligand is generated by inversion. The naphthalene-1,4-dicarboxyl­ate and L ligands bridge the metal centres, forming a three-dimensional framework, which is consolidated by O—H(...)O hydrogen bonds.

Related literature

For background to metal–organic frameworks, see Ma et al. (2003 [triangle]); Yang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1562-scheme1.jpg

Experimental

Crystal data

  • [Cd2(C12H6O4)2(C10H14N4)(H2O)]
  • M r = 861.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1562-efi1.jpg
  • a = 18.773 (2) Å
  • b = 14.9118 (19) Å
  • c = 14.2298 (18) Å
  • β = 127.3900 (10)°
  • V = 3165.0 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.41 mm−1
  • T = 293 (2) K
  • 0.33 × 0.27 × 0.22 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.691, T max = 0.732
  • 8715 measured reflections
  • 3102 independent reflections
  • 2809 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.056
  • S = 1.06
  • 3102 reflections
  • 226 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037525/hb2837sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037525/hb2837Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was supported by the Program for Young Academic Backbone in Heilongjiang Provincial University (grant No. 1152G053)

supplementary crystallographic information

Comment

Currently, metal-organic frameworks are of great interest because of their interesting structures and potential applications. Up to now, some interesting interpenetrated or entangled metal-organic networks with bis(imidazole)-containing ligands have been documented (Yang et al., 2008). However, flexible ligands such as 1,1'-(butane-1,4-diyl)diimidazole (L) has not been well explored to date (Ma et al., 2003). In this work, we selected naphthalene-1,4-dicarboxylic acid (1,4-H2ndc) and L as linkers in combination with a source of cadmium ions, generating a new coordination polymer, [Cd2(1,4-ndc)2(L)(H2O)], (I), which is reported here.

In compound (I) each CdII atom is six-coordinated by one N atom from one L ligand, and five O atoms from four carboxylate oxygen atoms and one water molecule in a distorted octohedral coordination sphere (Fig. 1, Table 1). The water molecule O atom has site symmetry 2 and the L ligand is situated across an inversion centre. The two neighbouring CdII atoms are bridged by the carboxylate and water molecule to form a dimer. The dimers are further linked by the backbone of 1,4-ndc and L ligands to form a three-dimensional framework (Fig. 2). An O—H···O hydrogen bond (Table 2) helps to consolidate the packing.

Experimental

A mixture of 1,4-H2ndc (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and CdCl2.2.5H2O (0.5 mmol) was suspended in 14 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 413 K for three days, the autoclave was slowly cooled to room temperature. The resulting colourless blocks of (I) were collected, washed with deionized water and dried.

Refinement

The C–bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H atom was located in a difference Fourier map and refined freely.

Figures

Fig. 1.
The asymmetric unit of (I), extended to show the Cd coordination sphere and the complete L ligand. Displacement ellipsoids are drawn at the 30% probability level and H atoms are omitted for clarity. Symmetry code: (i) 1-x, y, 0.5-z; (ii) x+0.5, y+0.5, ...
Fig. 2.
View of the three-dimensional framework of (I).

Crystal data

[Cd2(C12H6O4)2(C10H14N4)(H2O)]F000 = 1712
Mr = 861.40Dx = 1.808 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3102 reflections
a = 18.773 (2) Åθ = 1.1–26.0º
b = 14.9118 (19) ŵ = 1.41 mm1
c = 14.2298 (18) ÅT = 293 (2) K
β = 127.3900 (10)ºBlock, colorless
V = 3165.0 (7) Å30.33 × 0.27 × 0.22 mm
Z = 4

Data collection

Bruker APEX CCD diffractometer3102 independent reflections
Radiation source: fine-focus sealed tube2809 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
T = 293(2) Kθmax = 26.0º
ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Bruker, 1998)h = −16→23
Tmin = 0.691, Tmax = 0.732k = −18→17
8715 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056  w = 1/[σ2(Fo2) + (0.0287P)2 + 3.5082P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3102 reflectionsΔρmax = 0.47 e Å3
226 parametersΔρmin = −0.30 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.37567 (16)0.35138 (16)0.1979 (2)0.0297 (5)
C20.30731 (16)0.28246 (16)0.1737 (2)0.0280 (5)
C30.21801 (17)0.30336 (18)0.0966 (2)0.0359 (6)
H30.20050.35500.05090.043*
C40.15233 (17)0.24857 (19)0.0850 (2)0.0374 (6)
H40.09220.26460.03280.045*
C50.17624 (16)0.17188 (17)0.1500 (2)0.0305 (5)
C60.10956 (17)0.12334 (17)0.1573 (2)0.0333 (6)
C70.26737 (17)0.14297 (16)0.2231 (2)0.0300 (5)
C80.33359 (16)0.19901 (16)0.2353 (2)0.0288 (5)
C90.42311 (18)0.16783 (19)0.3048 (2)0.0422 (6)
H90.46760.20310.31330.051*
C100.4447 (2)0.0865 (2)0.3594 (3)0.0579 (9)
H100.50380.06700.40480.069*
C110.3796 (3)0.0319 (2)0.3485 (3)0.0549 (9)
H110.3957−0.02340.38640.066*
C120.2933 (2)0.05926 (19)0.2830 (3)0.0432 (7)
H120.25050.02290.27710.052*
C130.26154 (18)0.5557 (2)−0.0295 (3)0.0433 (7)
H130.24820.5072−0.00150.052*
C140.32799 (18)0.64237 (19)−0.0731 (2)0.0404 (6)
H140.37010.6657−0.08100.048*
C150.2503 (2)0.6826 (2)−0.1106 (3)0.0471 (7)
H150.22950.7378−0.14840.056*
C160.1209 (2)0.6416 (3)−0.1088 (3)0.0654 (10)
H16A0.12150.6989−0.07610.078*
H16B0.11110.5954−0.06970.078*
C170.04549 (17)0.6405 (2)−0.2362 (3)0.0479 (7)
H17A0.05080.5876−0.27120.057*
H17B0.05020.6926−0.27290.057*
N10.33508 (13)0.56210 (15)−0.02170 (18)0.0332 (5)
N20.20866 (14)0.62697 (18)−0.0825 (2)0.0440 (6)
O10.43795 (13)0.36693 (13)0.30491 (17)0.0455 (5)
O20.36314 (12)0.38808 (13)0.11038 (17)0.0438 (5)
O1W0.50000.55213 (17)0.25000.0267 (5)
O30.11724 (18)0.13705 (18)0.2487 (2)0.0756 (9)
O40.05171 (10)0.07264 (11)0.07468 (14)0.0285 (4)
Cd10.453957 (10)0.468475 (11)0.086231 (14)0.02277 (7)
HW110.5363 (19)0.581 (2)0.257 (3)0.047 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0285 (13)0.0274 (13)0.0399 (14)−0.0057 (10)0.0242 (12)−0.0041 (10)
C20.0297 (13)0.0301 (13)0.0297 (12)−0.0090 (10)0.0210 (11)−0.0043 (9)
C30.0322 (14)0.0360 (14)0.0372 (14)−0.0070 (11)0.0199 (12)0.0061 (11)
C40.0224 (13)0.0495 (16)0.0335 (13)−0.0073 (11)0.0135 (11)0.0031 (12)
C50.0330 (14)0.0352 (14)0.0277 (12)−0.0151 (11)0.0207 (11)−0.0086 (10)
C60.0349 (14)0.0362 (14)0.0367 (13)−0.0151 (11)0.0258 (12)−0.0083 (11)
C70.0383 (14)0.0263 (12)0.0321 (12)−0.0085 (10)0.0248 (12)−0.0065 (9)
C80.0326 (13)0.0286 (13)0.0275 (12)−0.0062 (10)0.0194 (11)−0.0049 (9)
C90.0309 (14)0.0451 (16)0.0473 (16)−0.0033 (12)0.0220 (13)−0.0020 (13)
C100.0466 (19)0.055 (2)0.059 (2)0.0159 (16)0.0252 (17)0.0103 (16)
C110.071 (2)0.0382 (17)0.057 (2)0.0114 (15)0.0393 (19)0.0134 (14)
C120.0588 (19)0.0316 (14)0.0473 (16)−0.0070 (13)0.0363 (16)−0.0002 (12)
C130.0273 (14)0.0576 (18)0.0448 (16)0.0071 (13)0.0219 (13)0.0155 (14)
C140.0337 (15)0.0472 (17)0.0424 (15)0.0055 (12)0.0242 (13)0.0125 (12)
C150.0421 (17)0.0460 (17)0.0500 (17)0.0172 (13)0.0264 (14)0.0216 (13)
C160.0298 (16)0.113 (3)0.0529 (19)0.0232 (18)0.0248 (15)0.010 (2)
C170.0267 (15)0.0587 (19)0.0532 (18)−0.0054 (13)0.0216 (14)−0.0030 (14)
N10.0226 (10)0.0413 (12)0.0333 (11)0.0050 (9)0.0157 (9)0.0085 (9)
N20.0240 (11)0.0664 (17)0.0381 (12)0.0166 (11)0.0169 (10)0.0157 (11)
O10.0446 (12)0.0513 (12)0.0427 (11)−0.0287 (9)0.0276 (10)−0.0154 (9)
O20.0366 (11)0.0469 (12)0.0466 (11)−0.0093 (8)0.0245 (9)0.0115 (9)
O1W0.0269 (14)0.0260 (13)0.0350 (13)0.0000.0227 (12)0.000
O30.0944 (19)0.103 (2)0.0678 (15)−0.0748 (16)0.0690 (15)−0.0539 (14)
O40.0261 (9)0.0332 (9)0.0295 (8)−0.0109 (7)0.0185 (7)−0.0068 (7)
Cd10.01994 (10)0.02484 (11)0.02462 (10)0.00131 (6)0.01409 (8)0.00274 (6)

Geometric parameters (Å, °)

C1—O21.245 (3)C13—H130.9300
C1—O11.256 (3)C14—C151.351 (4)
C1—C21.511 (3)C14—N11.366 (3)
C2—C31.370 (3)C14—H140.9300
C2—C81.427 (3)C15—N21.357 (4)
C3—C41.403 (3)C15—H150.9300
C3—H30.9300C16—N21.468 (3)
C4—C51.364 (4)C16—C171.474 (4)
C4—H40.9300C16—H16A0.9700
C5—C71.426 (4)C16—H16B0.9700
C5—C61.503 (3)C17—C17i1.502 (5)
C6—O31.236 (3)C17—H17A0.9700
C6—O41.258 (3)C17—H17B0.9700
C7—C81.418 (3)O1—Cd1ii2.2344 (17)
C7—C121.421 (4)O1W—Cd1ii2.2995 (14)
C8—C91.414 (4)O1W—HW110.76 (3)
C9—C101.363 (4)O4—Cd1iii2.3096 (16)
C9—H90.9300O4—Cd1iv2.4848 (15)
C10—C111.396 (5)Cd1—N12.264 (2)
C10—H100.9300Cd1—O22.2746 (17)
C11—C121.351 (5)Cd1—O1ii2.2344 (17)
C11—H110.9300Cd1—O4iii2.3096 (16)
C12—H120.9300Cd1—O4v2.4847 (15)
C13—N11.319 (3)Cd1—O1W2.2995 (14)
C13—N21.332 (4)
O2—C1—O1127.1 (2)C14—C15—H15126.6
O2—C1—C2116.9 (2)N2—C15—H15126.6
O1—C1—C2116.1 (2)N2—C16—C17113.7 (3)
C3—C2—C8119.3 (2)N2—C16—H16A108.8
C3—C2—C1119.0 (2)C17—C16—H16A108.8
C8—C2—C1121.6 (2)N2—C16—H16B108.8
C2—C3—C4121.5 (2)C17—C16—H16B108.8
C2—C3—H3119.3H16A—C16—H16B107.7
C4—C3—H3119.3C16—C17—C17i114.3 (3)
C5—C4—C3120.3 (2)C16—C17—H17A108.7
C5—C4—H4119.8C17i—C17—H17A108.7
C3—C4—H4119.8C16—C17—H17B108.7
C4—C5—C7120.2 (2)C17i—C17—H17B108.7
C4—C5—C6120.4 (2)H17A—C17—H17B107.6
C7—C5—C6119.0 (2)C13—N1—C14105.2 (2)
O3—C6—O4124.4 (2)C13—N1—Cd1124.23 (18)
O3—C6—C5115.0 (2)C14—N1—Cd1129.70 (17)
O4—C6—C5120.5 (2)C13—N2—C15106.8 (2)
C8—C7—C12119.2 (2)C13—N2—C16126.7 (3)
C8—C7—C5119.0 (2)C15—N2—C16126.4 (3)
C12—C7—C5121.7 (2)C1—O1—Cd1ii138.66 (17)
C9—C8—C7118.2 (2)C1—O2—Cd1132.78 (16)
C9—C8—C2122.5 (2)Cd1—O1W—Cd1ii114.29 (11)
C7—C8—C2119.2 (2)Cd1—O1W—HW11101 (2)
C10—C9—C8120.5 (3)Cd1ii—O1W—HW11115 (2)
C10—C9—H9119.8C6—O4—Cd1iii125.42 (15)
C8—C9—H9119.8C6—O4—Cd1iv124.57 (15)
C9—C10—C11121.3 (3)Cd1iii—O4—Cd1iv107.96 (6)
C9—C10—H10119.4O1ii—Cd1—N1173.89 (7)
C11—C10—H10119.4O1ii—Cd1—O289.23 (7)
C12—C11—C10120.1 (3)N1—Cd1—O284.66 (7)
C12—C11—H11119.9O1ii—Cd1—O1W92.34 (7)
C10—C11—H11119.9N1—Cd1—O1W87.83 (7)
C11—C12—C7120.7 (3)O2—Cd1—O1W89.30 (6)
C11—C12—H12119.7O1ii—Cd1—O4iii89.03 (6)
C7—C12—H12119.7N1—Cd1—O4iii93.33 (7)
N1—C13—N2111.8 (3)O2—Cd1—O4iii114.98 (7)
N1—C13—H13124.1O1W—Cd1—O4iii155.70 (5)
N2—C13—H13124.1O1ii—Cd1—O4v94.20 (7)
C15—C14—N1109.4 (2)N1—Cd1—O4v91.89 (7)
C15—C14—H14125.3O2—Cd1—O4v172.29 (6)
N1—C14—H14125.3O1W—Cd1—O4v83.67 (5)
C14—C15—N2106.8 (2)O4iii—Cd1—O4v72.04 (6)

Symmetry codes: (i) −x, y, −z−1/2; (ii) −x+1, y, −z+1/2; (iii) −x+1/2, −y+1/2, −z; (iv) x−1/2, y−1/2, z; (v) x+1/2, y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—HW11···O3v0.76 (3)1.80 (3)2.549 (2)169 (3)

Symmetry codes: (v) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2837).

References

  • Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem.42, 7531–7534. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun pp. 2233–2235. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography