PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1579.
Published online 2008 November 20. doi:  10.1107/S1600536808037847
PMCID: PMC2959996

Bis(μ-N,N′-di-4-pyridylpyridine-2,6-diamine)bis[dimethacrylatocobalt(II)] dihydrate

Abstract

The CoII ion in the title complex, [Co2(C4H5O2)4(C15H13N5)2]·2H2O, has a distorted square-planar coordination formed by the bridging bidentate N,N′-di-4-pyridylpyrid­ine-2,6-diamine (dapmp) ligands and two monodentate carboxyl­ate groups from methacrylates. Two dapmp ligands bridge two Co atoms, forming a dinuclear complex arranged around an inversion centre. N—H(...)O and O—H(...)O hydrogen bonds involving the solvent water mol­ecule result in the formation of a three-dimensional network. The aliphatic moiety of one of the methacrylate groups is disordered over two positions with fixed occupancies of 0.67 and 0.33.

Related literature

For related literature, see: Liu et al. (2008 [triangle]); Patra et al. (2004 [triangle]); Thorsten et al. (2004 [triangle]); Burchell et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1579-scheme1.jpg

Experimental

Crystal data

  • [Co2(C4H5O2)4(C15H13N5)2]·2H2O2
  • M r = 1020.82
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1579-efi1.jpg
  • a = 16.852 (3) Å
  • b = 17.425 (3) Å
  • c = 16.206 (2) Å
  • β = 91.848 (2)°
  • V = 4756.6 (12) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.77 mm−1
  • T = 298 (2) K
  • 0.28 × 0.20 × 0.16 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.814, T max = 0.887
  • 11993 measured reflections
  • 4289 independent reflections
  • 3333 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.113
  • S = 1.00
  • 4289 reflections
  • 319 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037847/dn2402sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037847/dn2402Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the Research Foundation of Lishui University (grant No. KZ08005) for financial support.

supplementary crystallographic information

Comment

Bridging bis(amidopyridine) ligands have been widely explored in coordination chemistry for building various novel structural architectures and functional solid materials. Besides their diverse coordination modes, amide groups of ligands have proved to be useful in self-assembly, since they give predictable patterns of hydrogen bonding that can add extra dimensionality and helicity to the supramolecular structures (Burchell, et al., 2006; Patra et al., 2004). The 2,4-di(2-aminopyridine)-6-methypyrimidine (dapmp) ligand is a versatile ligand like but with more diversity than terpyridine (tpy). The modified title ligand and its complexes have been reported (Thorsten et al., 2004). In this paper, we report here the synthesis and crystal structure of the title compound (I).

The Co(II) atom in the title complex, has a square coordination formed by two N atoms of two bridging dapmp ligands and two O atoms of two monodentate carboxylate groups from methacrylates. The bridging dapmp ligands bridge two Co atoms forming a dinuclear complex arranged around inversion center (Fig.1). The average Co—N bond length of 2.006 Å is close to the values observed in related complexes (Liu et al., 2008).

The occurence of N-H···O and O-H···O hydrogen bondings involving the solvent water molecule results in the formation of a three dimensionnal network (Table 1).

Experimental

dapmp (0.05 g, 0.18 mmol), Co(CH3COO)2 (0.035 g, 0.16 mmol), methacrylic acid (0.032 g, 0.15 mmol) and NaOH (1M, 0.5 mL) were added distilled water(15 mL), the mixture was heated for fifty hours under reflux. during the process stirring and influx were required. The resultant was kept at room temperature, two weeks later some single crystals of the size suitable for X-Ray diffraction measurement.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.98 Å (methyl) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atom.

The C atoms of one of the methacrylate group are disordered. The ratio of the occupancy factors of each component was determined to be 0.33/0.67. The two components were refined using the tools available in SHELXL-97 (PART and SAME instructions). Each corresponding C atoms were anisotropically refined using EADP restraints.

Figures

Fig. 1.
The structure of the dinuclear complex showing the atom-labeling scheme.Displacement ellipsoids are shown at the 30% probability level. H atoms and solvent water molecule have been omitted for clarity. Only one component of the disordered methacrylate ...

Crystal data

[Co2(C4H5O2)4(C15H13N5)2]·2H2OF000 = 2120
Mr = 1020.82Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4289 reflections
a = 16.852 (3) Åθ = 1.7–25.2º
b = 17.425 (3) ŵ = 0.77 mm1
c = 16.206 (2) ÅT = 298 (2) K
β = 91.848 (2)ºBlock, pink
V = 4756.6 (12) Å30.28 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker APEXII area-detector diffractometer4289 independent reflections
Radiation source: fine-focus sealed tube3333 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 298(2) Kθmax = 25.2º
[var phi] and ω scanθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −20→19
Tmin = 0.814, Tmax = 0.887k = −20→13
11993 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.113  w = 1/[σ2(Fo2) + (0.073P)2 + 1.1663P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.003
4289 reflectionsΔρmax = 0.67 e Å3
319 parametersΔρmin = −0.25 e Å3
5 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Co10.235159 (18)0.431425 (16)0.937768 (18)0.05265 (14)
N10.20029 (13)0.45034 (12)1.05235 (13)0.0639 (5)
N20.10374 (13)0.46526 (12)1.28525 (13)0.0653 (5)
H20.09610.51131.30230.078*
N30.08770 (11)0.33476 (11)1.31525 (12)0.0558 (5)
N40.07043 (12)0.20360 (11)1.34321 (13)0.0643 (5)
H40.05040.17091.37640.077*
N50.19558 (12)0.10578 (11)1.15108 (12)0.0605 (5)
O10.25618 (10)0.53794 (9)0.91709 (11)0.0603 (4)
O20.37530 (12)0.52113 (10)0.97624 (14)0.0822 (6)
O30.18484 (15)0.32931 (12)0.93913 (15)0.0935 (7)
O40.1035 (2)0.38372 (17)0.8496 (2)0.1382 (11)
O50.50106 (12)0.59087 (12)1.05678 (14)0.0931 (7)
H5B0.46480.56371.03240.140*
H5C0.54230.56171.06000.140*
C10.16847 (16)0.51510 (13)1.08051 (16)0.0622 (6)
H10.16690.55781.04600.075*
C20.13828 (16)0.52194 (14)1.15691 (16)0.0637 (6)
H2A0.11650.56841.17320.076*
C30.13977 (14)0.45961 (14)1.21099 (15)0.0565 (6)
C40.17974 (16)0.39479 (15)1.18482 (17)0.0673 (7)
H4A0.18810.35361.22050.081*
C50.20654 (17)0.39206 (15)1.10674 (18)0.0745 (8)
H50.23080.34711.08970.089*
C60.07752 (14)0.40755 (14)1.33749 (15)0.0545 (5)
C70.03970 (16)0.42917 (15)1.40823 (16)0.0649 (7)
H70.03460.48061.42230.078*
C80.00997 (16)0.37248 (16)1.45714 (16)0.0690 (7)
H8−0.01630.38521.50490.083*
C90.01910 (15)0.29651 (15)1.43540 (16)0.0643 (6)
H9−0.00080.25731.46770.077*
C100.05876 (13)0.28040 (14)1.36400 (15)0.0554 (6)
C110.10900 (13)0.17245 (13)1.27789 (15)0.0550 (6)
C120.13584 (16)0.09731 (14)1.28272 (17)0.0652 (7)
H120.12520.06751.32860.078*
C130.17805 (16)0.06716 (13)1.21981 (17)0.0650 (7)
H130.19570.01681.22490.078*
C140.16509 (16)0.17700 (14)1.14514 (15)0.0643 (6)
H140.17370.20461.09710.077*
C150.12263 (15)0.21124 (14)1.20446 (15)0.0613 (6)
H150.10260.26051.19620.074*
C160.32418 (15)0.56277 (13)0.94107 (16)0.0592 (6)
C170.34147 (17)0.64439 (15)0.92618 (19)0.0729 (7)
H170.39160.66230.94250.087*
C180.29301 (18)0.69284 (16)0.8925 (2)0.0808 (8)
H180.24300.67470.87630.097*
C190.3099 (3)0.77605 (18)0.8772 (3)0.1243 (15)
H19A0.36290.78790.89660.186*
H19B0.27280.80710.90600.186*
H19C0.30490.78640.81900.186*
C200.1275 (2)0.32774 (18)0.8840 (2)0.0810 (9)
C21A0.1154 (8)0.2382 (5)0.8948 (7)0.0857 (13)0.33
H21A0.13290.21400.94320.103*0.33
C22A0.0812 (6)0.1992 (5)0.8364 (7)0.0802 (12)0.33
H22A0.06480.22090.78620.096*0.33
C23A0.070 (6)0.1110 (16)0.857 (5)0.134 (4)0.33
H23A0.11200.09400.89360.201*0.33
H23B0.07010.08160.80680.201*0.33
H23C0.01970.10380.88290.201*0.33
C21B0.0859 (3)0.2565 (2)0.8567 (3)0.0857 (13)0.67
H21B0.04530.26010.81660.103*0.67
C22B0.1039 (3)0.1905 (2)0.8862 (3)0.0802 (12)0.67
H22B0.13840.18700.93210.096*0.67
C23B0.069 (3)0.1154 (8)0.846 (2)0.134 (4)0.67
H23D0.01470.12430.82820.201*0.67
H23E0.07050.07480.88630.201*0.67
H23F0.09950.10120.79980.201*0.67

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0661 (2)0.03338 (19)0.0593 (2)−0.00546 (13)0.01459 (15)−0.00101 (13)
N10.0783 (14)0.0434 (11)0.0706 (13)0.0006 (10)0.0128 (11)0.0045 (10)
N20.0872 (15)0.0476 (11)0.0614 (13)0.0011 (11)0.0100 (11)−0.0024 (10)
N30.0622 (11)0.0488 (11)0.0566 (11)−0.0004 (9)0.0051 (9)−0.0009 (9)
N40.0753 (13)0.0483 (11)0.0704 (13)−0.0017 (10)0.0186 (11)0.0029 (10)
N50.0723 (13)0.0426 (11)0.0673 (13)−0.0016 (10)0.0106 (10)0.0014 (9)
O10.0619 (9)0.0440 (9)0.0750 (11)−0.0025 (8)0.0048 (8)0.0018 (8)
O20.0795 (12)0.0498 (10)0.1157 (16)0.0080 (9)−0.0190 (11)0.0010 (10)
O30.1185 (18)0.0611 (12)0.1031 (16)−0.0207 (12)0.0382 (14)−0.0023 (11)
O40.167 (3)0.101 (2)0.147 (3)−0.010 (2)0.012 (2)0.0440 (19)
O50.0819 (13)0.0755 (13)0.1209 (18)0.0158 (11)−0.0102 (12)−0.0395 (12)
C10.0803 (16)0.0408 (12)0.0657 (15)−0.0017 (12)0.0067 (13)0.0037 (11)
C20.0817 (17)0.0406 (13)0.0691 (16)0.0003 (12)0.0066 (13)−0.0038 (11)
C30.0655 (14)0.0438 (12)0.0603 (14)−0.0024 (11)0.0003 (11)−0.0003 (11)
C40.0770 (16)0.0540 (14)0.0719 (17)0.0105 (13)0.0158 (13)0.0161 (13)
C50.0934 (19)0.0492 (15)0.0823 (19)0.0154 (14)0.0272 (15)0.0130 (13)
C60.0586 (13)0.0484 (13)0.0563 (13)0.0010 (11)0.0003 (11)−0.0022 (11)
C70.0734 (16)0.0564 (15)0.0652 (16)0.0010 (12)0.0090 (13)−0.0109 (12)
C80.0767 (16)0.0668 (17)0.0643 (15)0.0012 (14)0.0155 (13)−0.0107 (13)
C90.0698 (15)0.0609 (15)0.0630 (15)−0.0033 (12)0.0121 (12)−0.0024 (12)
C100.0543 (13)0.0509 (13)0.0609 (14)−0.0012 (11)0.0034 (11)−0.0013 (11)
C110.0554 (13)0.0474 (13)0.0623 (14)−0.0022 (10)0.0048 (11)−0.0044 (11)
C120.0809 (17)0.0457 (13)0.0701 (16)0.0002 (12)0.0180 (13)0.0065 (12)
C130.0754 (16)0.0425 (13)0.0778 (17)0.0025 (12)0.0124 (14)0.0043 (12)
C140.0870 (18)0.0494 (13)0.0566 (14)0.0046 (13)0.0055 (13)0.0022 (11)
C150.0759 (16)0.0484 (13)0.0594 (14)0.0088 (12)−0.0011 (12)−0.0004 (11)
C160.0629 (15)0.0444 (13)0.0707 (16)0.0016 (12)0.0080 (12)−0.0010 (11)
C170.0677 (16)0.0481 (14)0.102 (2)−0.0056 (13)−0.0045 (15)0.0045 (14)
C180.0806 (18)0.0525 (16)0.108 (2)−0.0039 (14)−0.0137 (16)0.0082 (15)
C190.140 (3)0.0547 (18)0.176 (4)−0.008 (2)−0.038 (3)0.029 (2)
C200.103 (2)0.0555 (17)0.086 (2)−0.0206 (17)0.0293 (19)−0.0119 (16)
C21A0.115 (4)0.055 (3)0.085 (4)−0.020 (3)−0.010 (3)0.008 (2)
C22A0.101 (3)0.054 (2)0.086 (3)−0.003 (2)0.001 (3)0.009 (3)
C23A0.163 (4)0.066 (3)0.173 (12)−0.041 (3)0.025 (5)−0.019 (4)
C21B0.115 (4)0.055 (3)0.085 (4)−0.020 (3)−0.010 (3)0.008 (2)
C22B0.101 (3)0.054 (2)0.086 (3)−0.003 (2)0.001 (3)0.009 (3)
C23B0.163 (4)0.066 (3)0.173 (12)−0.041 (3)0.025 (5)−0.019 (4)

Geometric parameters (Å, °)

Co1—O11.9210 (17)C8—H80.9300
Co1—O31.972 (2)C9—C101.383 (3)
Co1—N5i1.991 (2)C9—H90.9300
Co1—N11.993 (2)C11—C121.387 (3)
N1—C11.336 (3)C11—C151.394 (3)
N1—C51.347 (3)C12—C131.367 (4)
N2—C31.369 (3)C12—H120.9300
N2—C61.395 (3)C13—H130.9300
N2—H20.8600C14—C151.355 (3)
N3—C61.331 (3)C14—H140.9300
N3—C101.336 (3)C15—H150.9300
N4—C111.372 (3)C16—C171.473 (3)
N4—C101.395 (3)C17—C181.284 (4)
N4—H40.8600C17—H170.9300
N5—C131.342 (3)C18—C191.500 (4)
N5—C141.346 (3)C18—H180.9300
N5—Co1i1.991 (2)C19—H19A0.9600
O1—C161.274 (3)C19—H19B0.9600
O2—C161.250 (3)C19—H19C0.9600
O3—C201.295 (4)C20—C21B1.485 (5)
O4—C201.188 (4)C20—C21A1.583 (10)
O5—H5B0.8591C21A—C22A1.287 (12)
O5—H5C0.8618C21A—H21A0.9300
C1—C21.359 (4)C22A—C23A1.59 (2)
C1—H10.9300C22A—H22A0.9300
C2—C31.395 (3)C23A—H23A0.9600
C2—H2A0.9300C23A—H23B0.9600
C3—C41.388 (3)C23A—H23C0.9600
C4—C51.358 (4)C21B—C22B1.279 (6)
C4—H4A0.9300C21B—H21B0.9300
C5—H50.9300C22B—C23B1.568 (18)
C6—C71.382 (4)C22B—H22B0.9300
C7—C81.371 (4)C23B—H23D0.9600
C7—H70.9300C23B—H23E0.9600
C8—C91.380 (4)C23B—H23F0.9600
O1—Co1—O3162.90 (10)N4—C11—C15124.2 (2)
O1—Co1—N5i94.17 (8)C12—C11—C15116.3 (2)
O3—Co1—N5i88.66 (8)C13—C12—C11119.8 (2)
O1—Co1—N193.69 (8)C13—C12—H12120.1
O3—Co1—N189.94 (9)C11—C12—H12120.1
N5i—Co1—N1157.66 (9)N5—C13—C12124.1 (2)
C1—N1—C5115.9 (2)N5—C13—H13118.0
C1—N1—Co1126.27 (18)C12—C13—H13118.0
C5—N1—Co1117.78 (18)N5—C14—C15124.4 (2)
C3—N2—C6129.8 (2)N5—C14—H14117.8
C3—N2—H2115.1C15—C14—H14117.8
C6—N2—H2115.1C14—C15—C11119.8 (2)
C6—N3—C10117.6 (2)C14—C15—H15120.1
C11—N4—C10129.8 (2)C11—C15—H15120.1
C11—N4—H4115.1O2—C16—O1122.8 (2)
C10—N4—H4115.1O2—C16—C17119.9 (2)
C13—N5—C14115.4 (2)O1—C16—C17117.3 (2)
C13—N5—Co1i125.92 (17)C18—C17—C16125.3 (3)
C14—N5—Co1i118.68 (16)C18—C17—H17117.3
C16—O1—Co1116.37 (15)C16—C17—H17117.3
C20—O3—Co1108.8 (2)C17—C18—C19125.8 (3)
H5B—O5—H5C105.3C17—C18—H18117.1
N1—C1—C2123.5 (2)C19—C18—H18117.1
N1—C1—H1118.3C18—C19—H19A109.5
C2—C1—H1118.3C18—C19—H19B109.5
C1—C2—C3120.3 (2)H19A—C19—H19B109.5
C1—C2—H2A119.9C18—C19—H19C109.5
C3—C2—H2A119.9H19A—C19—H19C109.5
N2—C3—C4124.1 (2)H19B—C19—H19C109.5
N2—C3—C2119.8 (2)O4—C20—O3122.8 (3)
C4—C3—C2116.1 (2)O4—C20—C21B113.3 (4)
C5—C4—C3119.5 (2)O3—C20—C21B123.9 (4)
C5—C4—H4A120.3O4—C20—C21A144.8 (5)
C3—C4—H4A120.3O3—C20—C21A92.3 (5)
N1—C5—C4124.2 (2)C21B—C20—C21A31.7 (4)
N1—C5—H5117.9C22A—C21A—C20119.7 (9)
C4—C5—H5117.9C22A—C21A—H21A120.1
N3—C6—C7123.5 (2)C20—C21A—H21A120.1
N3—C6—N2118.4 (2)C21A—C22A—C23A114 (3)
C7—C6—N2118.1 (2)C21A—C22A—H22A122.8
C8—C7—C6118.0 (2)C23A—C22A—H22A122.8
C8—C7—H7121.0C22B—C21B—C20122.4 (5)
C6—C7—H7121.0C22B—C21B—H21B118.8
C7—C8—C9119.8 (2)C20—C21B—H21B118.8
C7—C8—H8120.1C21B—C22B—C23B121.0 (15)
C9—C8—H8120.1C21B—C22B—H22B119.5
C8—C9—C10118.0 (2)C23B—C22B—H22B119.5
C8—C9—H9121.0C22B—C23B—H23D109.5
C10—C9—H9121.0C22B—C23B—H23E109.5
N3—C10—C9123.1 (2)H23D—C23B—H23E109.5
N3—C10—N4118.7 (2)C22B—C23B—H23F109.5
C9—C10—N4118.2 (2)H23D—C23B—H23F109.5
N4—C11—C12119.5 (2)H23E—C23B—H23F109.5

Symmetry codes: (i) −x+1/2, −y+1/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4ii0.861.992.831 (4)167
N4—H4···O5iii0.861.982.840 (3)174
O5—H5B···O20.861.892.737 (3)170
O5—H5C···O2iv0.862.102.917 (3)158

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1/2, y−1/2, −z+5/2; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2402).

References

  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burchell, T. J., Eisler, D. J. & Puddephatt, R. (2006). J. Mol. Struct 796, 47–57.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Liu, J. Q., Wang, Y. Y., Ma, L. F., Zhang, W. H., Zeng, X. R., Shi, Q. Z. & Peng, S. M. (2008). Inorg. Chim. Acta, 361, 2327–2334.
  • Patra, A. K., Rose, M. J., Murphy, K. A., Olmstead, M. M. & Mascharak, P. K. (2004). Inorg. Chem.43, 4487–4495. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thorsten, G., Thomas, L. & Roland, F. (2004). Eur. J. Inorg. Chem. pp. 394–400.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography