PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1494.
Published online 2008 November 8. doi:  10.1107/S1600536808035228
PMCID: PMC2959994

2-(4-Ferrocenylphen­yl)-4,4,5,5-tetra­methyl-1,3,2-dioxaborolane

Abstract

In the title compound,, [Fe(C5H5)(C17H20BO2)], the two near parallel cyclo­penta­dienyl rings of the ferrocene group are eclipsed. The benzene ring is tilted with respect to the attached cyclo­penta­diene ring by 17.0 (1)° and by 24.2 (1)° with respect to the dioxaborolane ring. The mol­ecules assemble in the crystal via C—H(...)π inter­actions between the cyclo­penta­dienyl H atoms and the benzene and cyclo­penta­dienyl rings of neighbouring mol­ecules.

Related literature

For the related tris­(4-ferrocenylphen­yl)boroxine benzene solvate, see: Makarov et al. (2004 [triangle]). For other related structures, see: Anderson et al. (2003 [triangle]); Nyamori & Bala (2008 [triangle]). For related literature, see: Leclerc et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1494-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C17H20BO2)]
  • M r = 388.08
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1494-efi1.jpg
  • a = 12.4439 (3) Å
  • b = 12.9832 (3) Å
  • c = 13.0728 (3) Å
  • β = 117.126 (1)°
  • V = 1879.75 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.82 mm−1
  • T = 89 (2) K
  • 0.37 × 0.37 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.717, T max = 0.849
  • 23134 measured reflections
  • 4442 independent reflections
  • 3984 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.085
  • S = 1.03
  • 4442 reflections
  • 239 parameters
  • H-atom parameters constrained
  • Δρmax = 0.86 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and publCIF (Westrip, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035228/hg2435sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035228/hg2435Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Tania Groutso for help with the data collection.

supplementary crystallographic information

Comment

The title compound, (I), was prepared from the reaction of lithiated 4-bromophenylferrocene with 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxoborolane in tetrahydrofuran. Unlike the related tris(4-ferrocenylphenyl)boroxine benzene solvate (Makarov et al. (2004), the 2-(4-ferrocenyl-phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane is monomeric (Fig. 1). The two cyclopentadienyl rings are nearly eclipsed, average torsion angle 2.1 (1)°, with a small tilt of the two planes (C1—C5 and C6—C10) of 3.5 (1)°. The distances of the iron atom to the ring centroids were 1.6514 (2)Å and 1.6475 (2) Å respectively. The phenyl ring is tilted by 17.0 (1)° with respect to the (C6—C10) plane. This value is slightly higher than that observed in similar structures (Anderson et al. (2003), Nyamori and Bala (2008)). The dioxaborolane ring is in a half-chair conformation, with an O1—C17—C18—O2 torsion angle of 24.2 (1)°. The BO2 group is rotated away from the plane of the phenyl ring system by 11.1 (2)°, and the angle between the dioxaborolane ring and the phenylplane is 9.9 (1)°. The molecules pack in the crystal, (Fig. 2), with C—H···π interactions between cyclopentadienyl hydrogen atoms and the phenyl and cyclopentadienyl rings of neighbouring molecules, Table 1.

Experimental

To a solution of 4-bromophenyl ferrocene (0.2 g, 0.59 mmol) in dry THF (10 mL) stirred at -78°C under nitrogen was added dropwise a solution of n-BuLi 2.5M in hexane (0.51 ml, 0.88 mmol).The mixture was then stirred at -78 °C for 20 minutes. Then 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxoborolane (0.18 ml, 0.88 mmol) was added, the stirring was kept at -78°C for 2 h and the mixture allowed to warm to -35 C and stir for 1 h and then warmed to room temperature. The reaction mixture was then poured into water and extracted with diethyl ether (2 x 25 ml). The combined organic layers were washed with brine and dried with Na2SO4. The solvent removed under reduced pressure and purified by column chromatography (SiO2, Hexane/DCM =2/1) to give the pure compound 2-(4-ferrocenyl-phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.052 g, 0.129 mmol, 23%) as an orange solid. FAB-MS (C22H2510BFeO2) 387.13293 (C22H2511BFeO2) 388.12934. 1H NMR (CDCl3, 300 MHz) δ 1.36 (CH3, s 12H), 4.02 (CpH, s, 5H), 4.33 (CpH, t, J=1.84, 2H), 4.68 (CpH, t, J =1.85 2H), 7.46 (ArH, d, J=8.3 2H), 7.72 (ArH, d, J=8.3 2H) p.p.m..

Refinement

Hydrogen atoms were placed in calculated positions and refined using the riding model [C—H 0.93–0.97 Å), with Uiso(H) = 1.2 and 1.5 times Ueq(C) for aromatic and alkyl groups respectively. In the case of the methyl groups protons were rotated to fit the H-atom positions to the observed electron density.

Figures

Fig. 1.
Structure of (I) showing 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I) showing C—H..π interactions between adjacent molecules. [Symmetry codes: x,y,z and 1 - x,1 - y,1 - z]

Crystal data

[Fe(C5H5)(C17H20BO2)]F000 = 816
Mr = 388.08Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9781 reflections
a = 12.4439 (3) Åθ = 1.8–27.8º
b = 12.9832 (3) ŵ = 0.82 mm1
c = 13.0728 (3) ÅT = 89 (2) K
β = 117.126 (1)ºBlock, orange
V = 1879.75 (8) Å30.37 × 0.37 × 0.2 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer4442 independent reflections
Radiation source: fine-focus sealed tube3984 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.027
T = 89(2) Kθmax = 27.8º
ω scansθmin = 1.8º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −16→14
Tmin = 0.717, Tmax = 0.849k = 0→17
23134 measured reflectionsl = 0→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085  w = 1/[σ2(Fo2) + (0.0491P)2 + 1.0943P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4442 reflectionsΔρmax = 0.86 e Å3
239 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe10.244744 (18)0.661122 (14)0.209954 (16)0.01545 (8)
O20.36539 (9)1.21833 (8)−0.03562 (9)0.0207 (2)
O10.16554 (9)1.19391 (8)−0.16076 (9)0.0195 (2)
C110.26427 (12)0.89643 (10)0.14427 (11)0.0157 (3)
C140.26540 (13)1.05937 (10)0.00034 (12)0.0167 (3)
C180.33635 (13)1.29767 (11)−0.12386 (12)0.0187 (3)
C20.16209 (14)0.52057 (11)0.16048 (14)0.0231 (3)
H20.11050.49010.18540.028*
C160.37235 (12)0.94523 (10)0.16343 (12)0.0178 (3)
H160.44470.92390.22410.021*
C70.15815 (13)0.78484 (11)0.23606 (12)0.0186 (3)
H70.07890.80500.18950.022*
C130.15859 (13)1.00753 (10)−0.02096 (12)0.0172 (3)
H130.08681.0269−0.08360.021*
C80.26304 (13)0.81901 (11)0.22597 (12)0.0167 (3)
C90.36571 (13)0.76831 (11)0.31467 (12)0.0187 (3)
H90.44540.77580.32810.022*
C60.19744 (14)0.71467 (11)0.33018 (12)0.0209 (3)
H60.14800.68110.35560.025*
B10.26500 (15)1.15783 (11)−0.06779 (14)0.0174 (3)
C150.37260 (13)1.02504 (11)0.09282 (12)0.0184 (3)
H150.44531.05640.10710.022*
C50.23381 (15)0.61510 (11)0.05503 (13)0.0243 (3)
H50.23700.6572−0.00110.029*
C210.39377 (14)1.39832 (11)−0.06503 (13)0.0238 (3)
H21A0.36801.4143−0.00790.036*
H21B0.36951.4526−0.12100.036*
H21C0.48011.3916−0.02900.036*
C40.33403 (14)0.56821 (11)0.14749 (13)0.0226 (3)
H40.41440.57450.16280.027*
C100.32509 (14)0.70475 (11)0.37867 (12)0.0208 (3)
H100.37350.66390.44130.025*
C120.15769 (12)0.92783 (10)0.04947 (12)0.0169 (3)
H120.08540.89490.03350.020*
C170.19486 (13)1.29760 (11)−0.18488 (13)0.0201 (3)
C220.39120 (14)1.26270 (11)−0.20117 (14)0.0235 (3)
H22A0.47611.2510−0.15550.035*
H22B0.37901.3150−0.25730.035*
H22C0.35301.2000−0.23950.035*
C30.29014 (14)0.50988 (11)0.21282 (14)0.0228 (3)
H30.33690.47150.27830.027*
C200.14060 (15)1.37292 (13)−0.13159 (16)0.0294 (3)
H20A0.05541.3605−0.16250.044*
H20B0.15391.4422−0.14890.044*
H20C0.17831.3635−0.04980.044*
C190.13736 (16)1.31085 (15)−0.31429 (14)0.0312 (4)
H19A0.16531.2574−0.34710.047*
H19B0.15931.3768−0.33240.047*
H19C0.05111.3068−0.34530.047*
C10.12727 (14)0.58627 (12)0.06311 (13)0.0249 (3)
H10.04890.60670.01360.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.02072 (12)0.00975 (11)0.01600 (12)−0.00098 (7)0.00849 (9)0.00033 (7)
O20.0219 (5)0.0155 (5)0.0231 (5)−0.0012 (4)0.0087 (4)0.0059 (4)
O10.0234 (5)0.0134 (5)0.0205 (5)−0.0019 (4)0.0090 (4)0.0031 (4)
C110.0225 (6)0.0095 (5)0.0171 (6)−0.0009 (5)0.0106 (5)−0.0026 (5)
C140.0228 (7)0.0119 (6)0.0174 (6)0.0003 (5)0.0110 (5)−0.0002 (5)
C180.0234 (7)0.0130 (6)0.0206 (7)0.0000 (5)0.0107 (6)0.0037 (5)
C20.0296 (8)0.0134 (6)0.0292 (8)−0.0063 (6)0.0159 (6)−0.0055 (6)
C160.0196 (6)0.0135 (6)0.0192 (6)0.0003 (5)0.0078 (5)−0.0001 (5)
C70.0243 (7)0.0137 (6)0.0202 (7)−0.0002 (5)0.0122 (6)−0.0005 (5)
C130.0214 (7)0.0144 (6)0.0155 (6)0.0007 (5)0.0080 (5)−0.0011 (5)
C80.0235 (7)0.0105 (6)0.0170 (6)−0.0017 (5)0.0099 (5)−0.0018 (5)
C90.0232 (7)0.0140 (6)0.0176 (6)−0.0024 (5)0.0081 (6)−0.0015 (5)
C60.0310 (8)0.0147 (6)0.0214 (7)−0.0024 (5)0.0158 (6)0.0000 (5)
B10.0228 (8)0.0131 (7)0.0182 (7)−0.0004 (5)0.0111 (6)−0.0004 (5)
C150.0207 (6)0.0142 (6)0.0215 (7)−0.0014 (5)0.0106 (6)−0.0008 (5)
C50.0386 (9)0.0156 (7)0.0207 (7)−0.0018 (6)0.0153 (6)−0.0020 (5)
C210.0284 (7)0.0160 (7)0.0263 (7)−0.0033 (6)0.0118 (6)0.0005 (6)
C40.0291 (7)0.0154 (6)0.0273 (7)−0.0018 (6)0.0165 (6)−0.0046 (6)
C100.0305 (8)0.0149 (6)0.0153 (6)−0.0012 (5)0.0090 (6)0.0011 (5)
C120.0210 (6)0.0127 (6)0.0185 (6)−0.0031 (5)0.0102 (5)−0.0032 (5)
C170.0246 (7)0.0128 (6)0.0241 (7)0.0002 (5)0.0122 (6)0.0038 (5)
C220.0303 (8)0.0157 (6)0.0308 (8)−0.0003 (6)0.0193 (7)0.0017 (6)
C30.0316 (8)0.0103 (6)0.0272 (7)0.0015 (5)0.0140 (6)0.0007 (5)
C200.0302 (8)0.0184 (7)0.0438 (10)0.0026 (6)0.0205 (8)−0.0005 (7)
C190.0293 (8)0.0348 (9)0.0256 (8)0.0004 (7)0.0090 (7)0.0131 (7)
C10.0274 (8)0.0194 (7)0.0216 (7)−0.0019 (6)0.0057 (6)−0.0056 (6)

Geometric parameters (Å, °)

Fe1—C62.0357 (14)C13—C121.3885 (19)
Fe1—C32.0388 (14)C13—H130.9300
Fe1—C102.0431 (14)C8—C91.435 (2)
Fe1—C42.0454 (15)C9—C101.4220 (19)
Fe1—C72.0477 (14)C9—H90.9300
Fe1—C22.0492 (14)C6—C101.422 (2)
Fe1—C92.0488 (14)C6—H60.9300
Fe1—C12.0512 (15)C15—H150.9300
Fe1—C52.0558 (15)C5—C41.419 (2)
Fe1—C82.0626 (14)C5—C11.427 (2)
O2—B11.3695 (19)C5—H50.9300
O2—C181.4636 (16)C21—H21A0.9600
O1—B11.3626 (19)C21—H21B0.9600
O1—C171.4663 (16)C21—H21C0.9600
C11—C121.4007 (19)C4—C31.424 (2)
C11—C161.4020 (19)C4—H40.9300
C11—C81.4718 (18)C10—H100.9300
C14—C131.3998 (19)C12—H120.9300
C14—C151.403 (2)C17—C191.516 (2)
C14—B11.557 (2)C17—C201.525 (2)
C18—C211.519 (2)C22—H22A0.9600
C18—C221.524 (2)C22—H22B0.9600
C18—C171.567 (2)C22—H22C0.9600
C2—C31.426 (2)C3—H30.9300
C2—C11.426 (2)C20—H20A0.9600
C2—H20.9300C20—H20B0.9600
C16—C151.3887 (19)C20—H20C0.9600
C16—H160.9300C19—H19A0.9600
C7—C61.426 (2)C19—H19B0.9600
C7—C81.4405 (19)C19—H19C0.9600
C7—H70.9300C1—H10.9300
C6—Fe1—C3119.34 (6)C11—C8—Fe1129.97 (9)
C6—Fe1—C1040.82 (6)C10—C9—C8108.51 (13)
C3—Fe1—C10104.60 (6)C10—C9—Fe169.45 (8)
C6—Fe1—C4155.59 (6)C8—C9—Fe170.09 (8)
C3—Fe1—C440.80 (6)C10—C9—H9125.7
C10—Fe1—C4120.46 (6)C8—C9—H9125.7
C6—Fe1—C740.89 (6)Fe1—C9—H9126.3
C3—Fe1—C7156.19 (6)C10—C6—C7108.43 (12)
C10—Fe1—C768.79 (6)C10—C6—Fe169.87 (8)
C4—Fe1—C7162.19 (6)C7—C6—Fe170.01 (8)
C6—Fe1—C2105.52 (6)C10—C6—H6125.8
C3—Fe1—C240.82 (6)C7—C6—H6125.8
C10—Fe1—C2121.05 (6)Fe1—C6—H6125.9
C4—Fe1—C268.57 (6)O1—B1—O2114.03 (12)
C7—Fe1—C2121.64 (6)O1—B1—C14123.86 (13)
C6—Fe1—C968.60 (6)O2—B1—C14122.06 (13)
C3—Fe1—C9121.93 (6)C16—C15—C14121.35 (13)
C10—Fe1—C940.67 (5)C16—C15—H15119.3
C4—Fe1—C9107.46 (6)C14—C15—H15119.3
C7—Fe1—C968.77 (6)C4—C5—C1108.05 (13)
C2—Fe1—C9157.80 (6)C4—C5—Fe169.37 (8)
C6—Fe1—C1123.42 (6)C1—C5—Fe169.50 (9)
C3—Fe1—C168.54 (6)C4—C5—H5126.0
C10—Fe1—C1158.56 (6)C1—C5—H5126.0
C4—Fe1—C168.41 (6)Fe1—C5—H5126.7
C7—Fe1—C1108.84 (6)C18—C21—H21A109.5
C2—Fe1—C140.69 (6)C18—C21—H21B109.5
C9—Fe1—C1160.07 (6)H21A—C21—H21B109.5
C6—Fe1—C5161.33 (7)C18—C21—H21C109.5
C3—Fe1—C568.38 (6)H21A—C21—H21C109.5
C10—Fe1—C5157.54 (7)H21B—C21—H21C109.5
C4—Fe1—C540.47 (6)C5—C4—C3108.11 (13)
C7—Fe1—C5126.07 (6)C5—C4—Fe170.16 (9)
C2—Fe1—C568.40 (6)C3—C4—Fe169.36 (8)
C9—Fe1—C5123.65 (6)C5—C4—H4125.9
C1—Fe1—C540.67 (6)C3—C4—H4125.9
C6—Fe1—C868.88 (5)Fe1—C4—H4126.1
C3—Fe1—C8159.79 (6)C9—C10—C6108.03 (12)
C10—Fe1—C868.77 (5)C9—C10—Fe169.88 (8)
C4—Fe1—C8124.87 (6)C6—C10—Fe169.31 (8)
C7—Fe1—C841.03 (5)C9—C10—H10126.0
C2—Fe1—C8158.96 (6)C6—C10—H10126.0
C9—Fe1—C840.85 (6)Fe1—C10—H10126.4
C1—Fe1—C8124.36 (6)C13—C12—C11120.85 (13)
C5—Fe1—C8110.09 (6)C13—C12—H12119.6
B1—O2—C18107.39 (11)C11—C12—H12119.6
B1—O1—C17107.07 (11)O1—C17—C19107.88 (12)
C12—C11—C16118.08 (12)O1—C17—C20106.56 (12)
C12—C11—C8121.46 (12)C19—C17—C20110.78 (14)
C16—C11—C8120.36 (13)O1—C17—C18102.89 (11)
C13—C14—C15117.52 (12)C19—C17—C18114.64 (12)
C13—C14—B1121.73 (13)C20—C17—C18113.31 (12)
C15—C14—B1120.50 (13)C18—C22—H22A109.5
O2—C18—C21108.44 (11)C18—C22—H22B109.5
O2—C18—C22106.79 (11)H22A—C22—H22B109.5
C21—C18—C22110.03 (12)C18—C22—H22C109.5
O2—C18—C17102.54 (10)H22A—C22—H22C109.5
C21—C18—C17114.71 (12)H22B—C22—H22C109.5
C22—C18—C17113.65 (12)C4—C3—C2108.11 (13)
C3—C2—C1107.76 (13)C4—C3—Fe169.85 (8)
C3—C2—Fe169.20 (8)C2—C3—Fe169.98 (8)
C1—C2—Fe169.73 (8)C4—C3—H3125.9
C3—C2—H2126.1C2—C3—H3125.9
C1—C2—H2126.1Fe1—C3—H3125.8
Fe1—C2—H2126.5C17—C20—H20A109.5
C15—C16—C11120.74 (13)C17—C20—H20B109.5
C15—C16—H16119.6H20A—C20—H20B109.5
C11—C16—H16119.6C17—C20—H20C109.5
C6—C7—C8107.89 (13)H20A—C20—H20C109.5
C6—C7—Fe169.10 (8)H20B—C20—H20C109.5
C8—C7—Fe170.04 (8)C17—C19—H19A109.5
C6—C7—H7126.1C17—C19—H19B109.5
C8—C7—H7126.1H19A—C19—H19B109.5
Fe1—C7—H7126.4C17—C19—H19C109.5
C12—C13—C14121.36 (13)H19A—C19—H19C109.5
C12—C13—H13119.3H19B—C19—H19C109.5
C14—C13—H13119.3C2—C1—C5107.97 (14)
C9—C8—C7107.14 (12)C2—C1—Fe169.58 (8)
C9—C8—C11126.85 (12)C5—C1—Fe169.84 (9)
C7—C8—C11125.90 (13)C2—C1—H1126.0
C9—C8—Fe169.06 (8)C5—C1—H1126.0
C7—C8—Fe168.93 (8)Fe1—C1—H1126.1

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···C12i0.932.863.6302 (19)141
C5—H5···C6ii0.932.623.538 (2)168

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2435).

References

  • Anderson, F. P., Gallagher, J. F., Kenny, P. T. M., Ryan, C. & Savage, D. (2003). Acta Cryst. C59, m13–m15. [PubMed]
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Leclerc, N., Serieys, I. & Attias, A.-J. (2003). Tetrahedron Lett.44, 5879–5882.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Makarov, M. V., Dyadchenko, V. P. & Antipin, M. Yu. (2004). Russ. Chem. Bull.53, 2768–2773.
  • Nyamori, V. O. & Bala, M. D. (2008). Acta Cryst. E64, m1376. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2008). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography