PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1595–m1596.
Published online 2008 November 22. doi:  10.1107/S1600536808038476
PMCID: PMC2959990

catena-Poly[{di-μ-isonicotinato-bis[di­aqua­isonicotinatoeuropium(III)]}-μ-isonicotinato-[diisonicotinatocopper(II)]-μ-isonicotinato]

Abstract

The title compound, [CuEu2(C6H4NO2)8(H2O)4]n, displays a one-dimensional chain structure. The four-coordinate CuII ion (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-64-m1595-efi1.jpg) adopts a trans-CuN2O2 geometry and is bridged by two carboxyl­ate groups from two isonicotinate ligands. The EuIII ion adopts a distorted square-anti­prismatic geometry, being coordinated by four O atoms from bridging carboxyl­ate groups of four isonicotinate ligands, two O atoms from chelating carboxyl­ate groups of one isonicotinate ligand and two O atoms from coordinated water mol­ecules; adjacent EuIII ions in the chain are related by inversion. The water mol­ecules interact with the ligands via O—H(...)N hydrogen bonds [O(...)O = 2.782 (3)–2.881 (3) Å], which link the chains into a three-dimensional structure.

Related literature

For background literature, see: Zhao et al. (2006 [triangle]); Ma et al. (2001 [triangle]). For related structures, see: Liang et al. (2007 [triangle]); Zhang et al. (2005 [triangle]); Deng et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1595-scheme1.jpg

Experimental

Crystal data

  • [CuEu2(C6H4NO2)8(H2O)4]
  • M r = 1416.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1595-efi2.jpg
  • a = 9.5218 (9) Å
  • b = 15.0371 (13) Å
  • c = 18.2850 (16) Å
  • β = 93.822 (1)°
  • V = 2612.2 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.86 mm−1
  • T = 295 (2) K
  • 0.40 × 0.30 × 0.27 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.397, T max = 0.517 (expected range = 0.355–0.462)
  • 18387 measured reflections
  • 4853 independent reflections
  • 4222 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.021
  • wR(F 2) = 0.049
  • S = 1.04
  • 4853 reflections
  • 359 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038476/pv2118sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038476/pv2118Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Science Foundation of Quanzhou Normal University of China (grant No. 2008 K J01).

supplementary crystallographic information

Comment

In recent years, the study of heterometallic lanthanide-transition metal polymers has played an important role due to their potential applications in catalytic, magnetic and hochtemperatursupraleiter materials (Zhao et al., 2006; Ma et al., 2001). Isonicotinic acid is a good linear bridging ligand with oxygen and nitrogen donors on opposite sides. the crystal structures of heterometallic lanthanide-transition metal complexes with isonicotinate ligand have been reported (Liang et al., 2007; Zhang et al., 2005; Deng et al., 2008;). In order to extend further the study of these compounds, the title complex, (I), has been synthesized and its structure is presented in this article.

The molecular structure and the crystal packing diagram of the title compound are shown in Figs. 1 and 2, respectively. The complex structure is a one-dimensional chain consisting of two metal centres - Cu(II) and Eu(III), which are linked to each other by tridentate bridging isonicotinate ligands. It is worthwhile to note that one-dimensional chain is an axial-symmetric structure. Each Eu(III) cation is of an eight coordination consisting of eight oxygen atoms from four bridging carboxylate O atoms of four isonicotinate ligands [Eu—O distances ranging from 2.341 (2) to 2.366 (2) Å], two from chelating carboxylate O atoms of one isonicotinate ligand [Eu—O distances 2.477 (2) and 2.5428 (19) Å] and two water molecules [Eu—O distances 2.4133 (19) and 2.4548 (19) Å]. The O—Eu—O bond angles are in the range from 51.88 (6) to 152.34 (8)°. Therefore, the coordination polyhedron can be described as a distorted square antiprism. Two Eu(III) ions are connected by four bridging carboxylate groups of four isonicotinate ligands with a Eu···Eu distance of 4.5265 (4) Å. The Cu(II) cation, lies on an inversion center and is of four-coordination with an quadrilateral planar geometry, in which two coordinated oxygen atoms belong to two monodentate coordinating carboxylate O atoms of two isonicotinate ligands [Cu—O distance 1.9867 (19) Å] and two nitrogen atoms from two tridentate bridging isonicotinate ligands [Cu—N distance 2.011 (2) Å]. The O—Cu—N bond angles lie in a very narrow range of 89.26 (9) to 90.74 (9)°. Two weak Cu—N bonds with a distance of 2.654 (3)Å on both sides of the quadrilateral planar copper center are observed, in which the coordination N atoms come from pyridyl groups of two isonicotinate ligands bridging two Eu(III) ions via carboxylates in two adjacent molecular chains. The water molecules are hydrogen bonded to the N atoms of the pyridyl groups of the ligands via O—H···N type hydrogen bonds which link the complex into a three-dimensional structure (details of hydrogen bonding geometry are given in Table 1).

Experimental

A mixture of Eu2O3 (0.1811 g, 0.5 mmol), CuO (0.0801 g, 1 mmol), isonicotinic acid (0.4923 g, 4.0 mmol), and H2O (20.0 ml) was sealed in a 40 ml Teflon-lined stainless steel reactor, heated in an oven at 413 K for 72 h, and then slowly cooled to room temperature. The blue block single crystals suitable for X-ray analysis were collected.

Refinement

H atoms bonded to C atoms were placed geometrically and treated as riding, (C—H distances are 0.93 Å), with Uiso(H) = 1.2Ueq(C). The water H atoms found from Fourier difference maps were included in the refinements with restraints for O—H distances (0.829–0.833 Å) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
The ORTEP-3 (Farrugia, 1997) drawing of the title compound. Displacement ellipsoids are drawn at 30% probability level. Symmetry codes: (i) -x + 1, -y + 2, -z.
Fig. 2.
Projection showing the three-dimensional structure formed by H-bonding interaction of the compound (I).

Crystal data

[CuEu2(C6H4NO2)8(H2O)4]F000 = 1398
Mr = 1416.34Dx = 1.801 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6922 reflections
a = 9.5218 (9) Åθ = 2.5–28.0º
b = 15.0371 (13) ŵ = 2.86 mm1
c = 18.2850 (16) ÅT = 295 (2) K
β = 93.8220 (10)ºBlock, green
V = 2612.2 (4) Å30.40 × 0.30 × 0.27 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer4853 independent reflections
Radiation source: fine-focus sealed tube4222 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
T = 295(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −10→11
Tmin = 0.397, Tmax = 0.517k = −17→18
18387 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.049  w = 1/[σ2(Fo2) + (0.0175P)2 + 1.449P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.006
4853 reflectionsΔρmax = 0.36 e Å3
359 parametersΔρmin = −0.36 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00683 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Eu10.303549 (14)1.084800 (9)−0.000640 (7)0.01521 (6)
Cu10.00000.50000.00000.02112 (12)
O10.1022 (2)1.06985 (13)0.08317 (11)0.0256 (5)
O20.2241 (2)1.19395 (13)0.08933 (11)0.0319 (5)
O30.4104 (2)1.03423 (18)0.11132 (12)0.0440 (6)
O40.6048 (3)0.95248 (17)0.11231 (12)0.0437 (6)
O50.2714 (2)0.92881 (14)−0.00398 (13)0.0378 (6)
O60.4704 (2)0.85317 (15)−0.00984 (14)0.0454 (6)
O7−0.1420 (2)0.55366 (14)−0.07136 (11)0.0276 (5)
O8−0.3139 (2)0.62128 (16)−0.01438 (11)0.0370 (6)
N1−0.0769 (4)1.2279 (2)0.30315 (16)0.0494 (8)
N20.5926 (3)1.0505 (3)0.37273 (15)0.0521 (9)
N30.1135 (2)0.61288 (15)0.00239 (12)0.0193 (5)
N4−0.4825 (3)0.6230 (2)−0.28160 (15)0.0448 (8)
C1−0.1334 (4)1.1683 (3)0.2564 (2)0.0579 (12)
H1−0.22131.14560.26560.069*
C2−0.0711 (4)1.1377 (3)0.1950 (2)0.0463 (10)
H2−0.11511.09490.16480.056*
C30.0576 (3)1.1721 (2)0.17983 (15)0.0259 (7)
C40.1180 (4)1.2343 (2)0.22750 (18)0.0420 (9)
H40.20501.25890.21890.050*
C50.0485 (4)1.2599 (3)0.2882 (2)0.0507 (10)
H50.09141.30150.32010.061*
C60.1329 (3)1.1432 (2)0.11331 (15)0.0226 (6)
C70.5089 (4)1.1027 (3)0.33001 (19)0.0462 (10)
H70.46561.15040.35180.055*
C80.4824 (4)1.0906 (2)0.25533 (17)0.0314 (7)
H80.42161.12830.22820.038*
C90.5483 (3)1.0211 (2)0.22209 (15)0.0229 (6)
C100.6410 (4)0.9697 (3)0.26468 (17)0.0406 (9)
H100.69130.92420.24390.049*
C110.6578 (4)0.9867 (3)0.33875 (19)0.0573 (12)
H110.71970.95070.36690.069*
C120.5193 (3)1.0016 (2)0.14180 (15)0.0252 (7)
C130.0470 (3)0.69169 (19)0.00148 (15)0.0233 (6)
H13−0.05080.69210.00040.028*
C140.1172 (3)0.77197 (19)0.00207 (15)0.0231 (6)
H140.06760.82520.00270.028*
C150.2621 (3)0.77222 (19)0.00173 (14)0.0207 (6)
C160.3327 (3)0.69096 (19)0.00510 (15)0.0241 (7)
H160.43050.68890.00720.029*
C170.2545 (3)0.6135 (2)0.00524 (15)0.0229 (6)
H170.30180.55940.00740.027*
C180.3420 (3)0.8586 (2)−0.00392 (16)0.0254 (7)
C19−0.5216 (3)0.6665 (2)−0.22291 (19)0.0408 (9)
H19−0.59950.7038−0.22880.049*
C20−0.4541 (3)0.6600 (2)−0.15378 (17)0.0320 (7)
H20−0.48560.6926−0.11480.038*
C21−0.3387 (3)0.6041 (2)−0.14357 (16)0.0258 (7)
C22−0.2961 (4)0.5588 (2)−0.20395 (18)0.0420 (9)
H22−0.21910.5207−0.19940.050*
C23−0.3693 (4)0.5708 (3)−0.2715 (2)0.0532 (11)
H23−0.33790.5410−0.31180.064*
C24−0.2594 (3)0.59323 (18)−0.06933 (16)0.0239 (7)
O90.0897 (2)1.07055 (13)−0.07832 (11)0.0284 (5)
H1W0.07571.0919−0.12020.043*
H2W0.03011.0314−0.07150.043*
O100.2777 (2)1.22483 (13)−0.06923 (11)0.0299 (5)
H3W0.32081.2307−0.10680.045*
H4W0.27381.2729−0.04730.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.01495 (9)0.01529 (9)0.01549 (8)−0.00210 (6)0.00169 (5)−0.00087 (5)
Cu10.0205 (3)0.0153 (3)0.0264 (3)−0.0064 (2)−0.0071 (2)0.0056 (2)
O10.0249 (12)0.0272 (12)0.0251 (11)−0.0042 (9)0.0061 (9)−0.0054 (9)
O20.0394 (13)0.0233 (12)0.0351 (12)−0.0072 (10)0.0194 (10)−0.0044 (9)
O30.0394 (15)0.0656 (18)0.0255 (12)0.0092 (13)−0.0078 (11)0.0041 (12)
O40.0550 (16)0.0506 (15)0.0274 (12)0.0129 (13)0.0161 (11)−0.0074 (11)
O50.0373 (14)0.0178 (12)0.0576 (16)−0.0060 (10)−0.0016 (12)0.0012 (10)
O60.0214 (13)0.0354 (14)0.0796 (19)−0.0127 (11)0.0041 (12)0.0022 (13)
O70.0268 (12)0.0267 (12)0.0281 (11)−0.0024 (10)−0.0083 (9)0.0054 (9)
O80.0475 (15)0.0358 (14)0.0272 (12)0.0008 (11)−0.0022 (11)−0.0020 (10)
N10.064 (2)0.0436 (19)0.0442 (18)−0.0060 (17)0.0313 (16)−0.0110 (15)
N20.046 (2)0.088 (3)0.0216 (15)−0.0102 (19)−0.0030 (14)−0.0089 (16)
N30.0209 (13)0.0159 (12)0.0208 (12)−0.0044 (10)−0.0011 (10)0.0023 (9)
N40.049 (2)0.0461 (19)0.0368 (17)0.0086 (16)−0.0195 (14)−0.0070 (14)
C10.049 (2)0.062 (3)0.067 (3)−0.017 (2)0.040 (2)−0.023 (2)
C20.037 (2)0.050 (2)0.054 (2)−0.0138 (18)0.0207 (18)−0.0225 (18)
C30.0276 (17)0.0260 (17)0.0250 (16)0.0029 (14)0.0077 (13)−0.0016 (13)
C40.045 (2)0.043 (2)0.041 (2)−0.0128 (18)0.0190 (17)−0.0108 (16)
C50.065 (3)0.045 (2)0.044 (2)−0.013 (2)0.0199 (19)−0.0180 (18)
C60.0195 (16)0.0263 (17)0.0219 (15)0.0037 (13)0.0021 (12)0.0027 (12)
C70.057 (3)0.050 (2)0.034 (2)−0.007 (2)0.0143 (18)−0.0162 (17)
C80.0341 (19)0.0342 (19)0.0267 (16)0.0047 (15)0.0072 (14)−0.0006 (14)
C90.0208 (16)0.0294 (17)0.0184 (14)−0.0025 (13)0.0018 (12)0.0014 (12)
C100.040 (2)0.054 (2)0.0282 (18)0.0150 (18)0.0034 (15)0.0054 (16)
C110.046 (2)0.100 (4)0.0249 (19)0.018 (2)−0.0035 (17)0.011 (2)
C120.0283 (18)0.0276 (17)0.0198 (15)−0.0068 (14)0.0032 (13)0.0029 (13)
C130.0177 (15)0.0229 (16)0.0289 (16)−0.0017 (12)−0.0013 (12)0.0014 (12)
C140.0211 (16)0.0169 (15)0.0313 (16)0.0008 (12)0.0003 (12)0.0002 (12)
C150.0217 (16)0.0209 (16)0.0190 (14)−0.0076 (12)−0.0011 (12)−0.0006 (11)
C160.0168 (16)0.0236 (17)0.0319 (16)−0.0036 (12)0.0015 (13)0.0012 (13)
C170.0221 (16)0.0184 (15)0.0278 (16)0.0002 (13)−0.0006 (12)0.0017 (12)
C180.0270 (18)0.0219 (17)0.0268 (16)−0.0085 (13)−0.0021 (13)0.0001 (12)
C190.0283 (19)0.045 (2)0.047 (2)0.0097 (17)−0.0104 (16)0.0023 (17)
C200.0272 (18)0.037 (2)0.0319 (17)0.0040 (15)−0.0007 (14)−0.0001 (14)
C210.0246 (17)0.0228 (17)0.0291 (16)−0.0030 (13)−0.0060 (13)0.0019 (12)
C220.046 (2)0.042 (2)0.0360 (19)0.0178 (18)−0.0124 (17)−0.0118 (16)
C230.062 (3)0.057 (3)0.038 (2)0.022 (2)−0.0196 (19)−0.0229 (18)
C240.0262 (17)0.0156 (15)0.0289 (16)−0.0055 (13)−0.0055 (13)0.0038 (12)
O90.0247 (12)0.0343 (13)0.0250 (11)−0.0101 (10)−0.0081 (9)0.0053 (9)
O100.0414 (13)0.0221 (11)0.0277 (11)0.0021 (10)0.0129 (10)0.0045 (9)

Geometric parameters (Å, °)

Eu1—O4i2.341 (2)C3—C61.516 (4)
Eu1—O6i2.342 (2)C4—C51.385 (5)
Eu1—O32.351 (2)C4—H40.9300
Eu1—O52.366 (2)C5—H50.9300
Eu1—O92.4133 (19)C7—C81.384 (5)
Eu1—O102.4548 (19)C7—H70.9300
Eu1—O22.477 (2)C8—C91.381 (4)
Eu1—O12.5428 (19)C8—H80.9300
Eu1—C62.864 (3)C9—C101.376 (4)
Cu1—O7ii1.9867 (19)C9—C121.504 (4)
Cu1—O71.9867 (19)C10—C111.377 (5)
Cu1—N32.011 (2)C10—H100.9300
Cu1—N3ii2.011 (2)C11—H110.9300
O1—C61.259 (3)C13—C141.380 (4)
O2—C61.256 (3)C13—H130.9300
O3—C121.245 (4)C14—C151.380 (4)
O4—C121.248 (4)C14—H140.9300
O4—Eu1i2.341 (2)C15—C161.394 (4)
O5—C181.251 (4)C15—C181.513 (4)
O6—C181.237 (4)C16—C171.383 (4)
O6—Eu1i2.342 (2)C16—H160.9300
O7—C241.269 (4)C17—H170.9300
O8—C241.235 (4)C19—C201.383 (4)
N1—C11.326 (5)C19—H190.9300
N1—C51.333 (5)C20—C211.386 (4)
N2—C111.320 (5)C20—H200.9300
N2—C71.334 (5)C21—C221.381 (4)
N3—C171.340 (4)C21—C241.517 (4)
N3—C131.343 (4)C22—C231.389 (5)
N4—C191.331 (4)C22—H220.9300
N4—C231.336 (5)C23—H230.9300
C1—C21.382 (5)O9—H1W0.8334
C1—H10.9300O9—H2W0.8326
C2—C31.376 (4)O10—H3W0.8291
C2—H20.9300O10—H4W0.8292
C3—C41.378 (4)
O4i—Eu1—O6i76.87 (9)N1—C5—H5118.5
O4i—Eu1—O3121.14 (8)C4—C5—H5118.5
O6i—Eu1—O373.47 (9)O2—C6—O1121.7 (3)
O4i—Eu1—O578.18 (9)O2—C6—C3118.8 (3)
O6i—Eu1—O5120.90 (8)O1—C6—C3119.6 (3)
O3—Eu1—O575.49 (9)O2—C6—Eu159.57 (14)
O4i—Eu1—O979.30 (8)O1—C6—Eu162.56 (14)
O6i—Eu1—O9144.92 (8)C3—C6—Eu1173.2 (2)
O3—Eu1—O9141.54 (8)N2—C7—C8124.3 (3)
O5—Eu1—O978.12 (7)N2—C7—H7117.9
O4i—Eu1—O1077.90 (8)C8—C7—H7117.9
O6i—Eu1—O1076.15 (8)C7—C8—C9118.4 (3)
O3—Eu1—O10138.18 (8)C7—C8—H8120.8
O5—Eu1—O10145.98 (7)C9—C8—H8120.8
O9—Eu1—O1073.94 (7)C10—C9—C8118.0 (3)
O4i—Eu1—O2152.34 (8)C10—C9—C12120.8 (3)
O6i—Eu1—O290.07 (8)C8—C9—C12121.2 (3)
O3—Eu1—O276.68 (8)C9—C10—C11118.7 (3)
O5—Eu1—O2129.00 (7)C9—C10—H10120.6
O9—Eu1—O299.60 (7)C11—C10—H10120.6
O10—Eu1—O275.30 (7)N2—C11—C10124.8 (4)
O4i—Eu1—O1147.58 (8)N2—C11—H11117.6
O6i—Eu1—O1135.36 (8)C10—C11—H11117.6
O3—Eu1—O175.31 (7)O3—C12—O4126.0 (3)
O5—Eu1—O180.01 (7)O3—C12—C9117.0 (3)
O9—Eu1—O172.93 (7)O4—C12—C9117.0 (3)
O10—Eu1—O1109.25 (7)N3—C13—C14122.9 (3)
O2—Eu1—O151.88 (6)N3—C13—H13118.5
O4i—Eu1—C6165.98 (8)C14—C13—H13118.5
O6i—Eu1—C6112.40 (9)C15—C14—C13119.1 (3)
O3—Eu1—C672.50 (8)C15—C14—H14120.4
O5—Eu1—C6104.14 (8)C13—C14—H14120.4
O9—Eu1—C687.60 (8)C14—C15—C16118.5 (3)
O10—Eu1—C693.78 (7)C14—C15—C18120.7 (3)
O2—Eu1—C625.93 (7)C16—C15—C18120.8 (3)
O1—Eu1—C626.07 (7)C17—C16—C15118.7 (3)
O7ii—Cu1—O7180.0C17—C16—H16120.7
O7ii—Cu1—N389.26 (9)C15—C16—H16120.7
O7—Cu1—N390.74 (9)N3—C17—C16123.0 (3)
O7ii—Cu1—N3ii90.74 (9)N3—C17—H17118.5
O7—Cu1—N3ii89.26 (9)C16—C17—H17118.5
N3—Cu1—N3ii180.0O6—C18—O5126.2 (3)
C6—O1—Eu191.37 (16)O6—C18—C15116.9 (3)
C6—O2—Eu194.50 (17)O5—C18—C15116.8 (3)
C12—O3—Eu1144.7 (2)N4—C19—C20124.4 (3)
C12—O4—Eu1i144.1 (2)N4—C19—H19117.8
C18—O5—Eu1140.1 (2)C20—C19—H19117.8
C18—O6—Eu1i151.0 (2)C19—C20—C21118.8 (3)
C24—O7—Cu1137.19 (19)C19—C20—H20120.6
C1—N1—C5116.3 (3)C21—C20—H20120.6
C11—N2—C7115.7 (3)C22—C21—C20117.6 (3)
C17—N3—C13117.7 (2)C22—C21—C24120.5 (3)
C17—N3—Cu1122.85 (19)C20—C21—C24121.9 (3)
C13—N3—Cu1119.46 (19)C21—C22—C23119.3 (3)
C19—N4—C23116.3 (3)C21—C22—H22120.3
N1—C1—C2124.8 (3)C23—C22—H22120.3
N1—C1—H1117.6N4—C23—C22123.5 (3)
C2—C1—H1117.6N4—C23—H23118.2
C3—C2—C1118.3 (3)C22—C23—H23118.2
C3—C2—H2120.8O8—C24—O7127.0 (3)
C1—C2—H2120.8O8—C24—C21118.7 (3)
C2—C3—C4117.9 (3)O7—C24—C21114.3 (3)
C2—C3—C6122.0 (3)Eu1—O9—H1W125.7
C4—C3—C6120.1 (3)Eu1—O9—H2W122.1
C3—C4—C5119.6 (3)H1W—O9—H2W110.0
C3—C4—H4120.2Eu1—O10—H3W118.5
C5—C4—H4120.2Eu1—O10—H4W120.4
N1—C5—C4123.1 (3)H3W—O10—H4W110.4
O4i—Eu1—O1—C6−154.11 (17)O10—Eu1—C6—O2−44.17 (18)
O6i—Eu1—O1—C633.3 (2)O1—Eu1—C6—O2−172.2 (3)
O3—Eu1—O1—C680.12 (17)O4i—Eu1—C6—O175.1 (4)
O5—Eu1—O1—C6157.60 (17)O6i—Eu1—C6—O1−155.36 (16)
O9—Eu1—O1—C6−121.87 (17)O3—Eu1—C6—O1−92.26 (17)
O10—Eu1—O1—C6−56.31 (17)O5—Eu1—C6—O1−22.77 (18)
O2—Eu1—O1—C6−4.30 (16)O9—Eu1—C6—O154.35 (16)
O4i—Eu1—O2—C6148.82 (19)O10—Eu1—C6—O1128.07 (16)
O6i—Eu1—O2—C6−150.30 (18)O2—Eu1—C6—O1172.2 (3)
O3—Eu1—O2—C6−77.32 (18)C11—N2—C7—C83.6 (6)
O5—Eu1—O2—C6−18.9 (2)N2—C7—C8—C9−1.3 (6)
O9—Eu1—O2—C663.58 (18)C7—C8—C9—C10−2.4 (5)
O10—Eu1—O2—C6134.05 (18)C7—C8—C9—C12177.2 (3)
O1—Eu1—O2—C64.33 (16)C8—C9—C10—C113.5 (5)
O4i—Eu1—O3—C1216.4 (4)C12—C9—C10—C11−176.2 (3)
O6i—Eu1—O3—C12−46.5 (4)C7—N2—C11—C10−2.4 (6)
O5—Eu1—O3—C1282.6 (4)C9—C10—C11—N2−1.1 (7)
O9—Eu1—O3—C12130.7 (4)Eu1—O3—C12—O4−29.2 (6)
O10—Eu1—O3—C12−91.6 (4)Eu1—O3—C12—C9152.7 (3)
O2—Eu1—O3—C12−140.6 (4)Eu1i—O4—C12—O326.5 (6)
O1—Eu1—O3—C12165.8 (4)Eu1i—O4—C12—C9−155.4 (3)
C6—Eu1—O3—C12−167.2 (4)C10—C9—C12—O3161.7 (3)
O4i—Eu1—O5—C1864.0 (3)C8—C9—C12—O3−17.9 (4)
O6i—Eu1—O5—C18−2.7 (4)C10—C9—C12—O4−16.6 (4)
O3—Eu1—O5—C18−62.9 (3)C8—C9—C12—O4163.8 (3)
O9—Eu1—O5—C18145.3 (3)C17—N3—C13—C141.1 (4)
O10—Eu1—O5—C18110.1 (3)Cu1—N3—C13—C14−179.2 (2)
O2—Eu1—O5—C18−121.8 (3)N3—C13—C14—C151.7 (4)
O1—Eu1—O5—C18−140.2 (3)C13—C14—C15—C16−3.7 (4)
C6—Eu1—O5—C18−130.2 (3)C13—C14—C15—C18175.0 (3)
N3—Cu1—O7—C24−95.7 (3)C14—C15—C16—C172.9 (4)
N3ii—Cu1—O7—C2484.3 (3)C18—C15—C16—C17−175.7 (3)
O7ii—Cu1—N3—C1739.1 (2)C13—N3—C17—C16−1.9 (4)
O7—Cu1—N3—C17−140.9 (2)Cu1—N3—C17—C16178.4 (2)
O7ii—Cu1—N3—C13−140.6 (2)C15—C16—C17—N3−0.1 (4)
O7—Cu1—N3—C1339.4 (2)Eu1i—O6—C18—O522.8 (7)
C5—N1—C1—C20.6 (7)Eu1i—O6—C18—C15−159.1 (3)
N1—C1—C2—C3−1.4 (7)Eu1—O5—C18—O6−8.6 (5)
C1—C2—C3—C41.0 (6)Eu1—O5—C18—C15173.3 (2)
C1—C2—C3—C6−179.3 (3)C14—C15—C18—O6−174.3 (3)
C2—C3—C4—C5−0.1 (5)C16—C15—C18—O64.3 (4)
C6—C3—C4—C5−179.8 (3)C14—C15—C18—O53.9 (4)
C1—N1—C5—C40.4 (6)C16—C15—C18—O5−177.5 (3)
C3—C4—C5—N1−0.7 (6)C23—N4—C19—C20−0.7 (6)
Eu1—O2—C6—O1−8.1 (3)N4—C19—C20—C21−0.7 (5)
Eu1—O2—C6—C3172.4 (2)C19—C20—C21—C221.1 (5)
Eu1—O1—C6—O27.9 (3)C19—C20—C21—C24−179.8 (3)
Eu1—O1—C6—C3−172.7 (2)C20—C21—C22—C230.0 (5)
C2—C3—C6—O2158.1 (3)C24—C21—C22—C23−179.1 (3)
C4—C3—C6—O2−22.2 (4)C19—N4—C23—C221.9 (6)
C2—C3—C6—O1−21.4 (5)C21—C22—C23—N4−1.5 (7)
C4—C3—C6—O1158.3 (3)Cu1—O7—C24—O810.8 (5)
O4i—Eu1—C6—O2−97.1 (4)Cu1—O7—C24—C21−168.0 (2)
O6i—Eu1—C6—O232.40 (19)C22—C21—C24—O8−167.1 (3)
O3—Eu1—C6—O295.50 (18)C20—C21—C24—O813.9 (4)
O5—Eu1—C6—O2164.99 (17)C22—C21—C24—O711.8 (4)
O9—Eu1—C6—O2−117.89 (18)C20—C21—C24—O7−167.3 (3)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O10—H4W···O8iii0.831.972.782 (3)165
O9—H2W···O1iii0.831.982.790 (3)164
O10—H3W···N1iv0.832.062.881 (3)169
O9—H1W···N4v0.832.002.807 (3)161

Symmetry codes: (iii) −x, −y+2, −z; (iv) x+1/2, −y+5/2, z−1/2; (v) −x−1/2, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2118).

References

  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deng, H., Liu, Z.-H., Qiu, Y.-C., Li, Y.-H. & Zeller, M. (2008). Inorg. Chem. Commun. pp. 978–981.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Liang, F.-P., Huang, M.-L., Jiang, C.-F., Li, Y. & Hu, R.-X. (2007). J. Coord. Chem. pp. 2343–2350.
  • Ma, B.-Q., Gao, S., Su, G. & Xu, G.-X. (2001). Angew. Chem. Int. Ed.40, 434–437. [PubMed]
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed.44, 1385–1388. [PubMed]
  • Zhao, B., Gao, H.-L., Chen, X.-Y., Cheng, P., Shi, W., Liao, D.-Z., Yan, S. P. & Jiang, Z.-H. (2006). Chem. Eur. J.12, 149–158.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography