PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1602.
Published online 2008 November 22. doi:  10.1107/S1600536808038348
PMCID: PMC2959979

Poly[4,4′-imino­dipyridinium [tetra-μ3-oxido-tetra­oxido-di-μ4-phosphato-κ4 O:O′:O′′:O′′′-tetra­vanadium(V)]]

Abstract

In the title salt, {(C10H11N3)[V4O8(PO4)2]}n, cubane-like [V4O8]4+ clusters are connected by phosphate anions into anionic [V4P2O16]n 2n layers. These aggregate into the three-dimensional structure via N—H(...)O hydrogen-bonding mechanisms imparted by 4,4′-imino­dipyridinium dications situated between the layers.

Related literature

For a nickel vanadate phase incorporating 4,4′-dipyridylamine, see: LaDuca et al. (2001 [triangle]). For a related layered vanadium phosphate solid containing doubly protonated 4,4′-bipyridine cations, see: Shi et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1602-scheme1.jpg

Experimental

Crystal data

  • (C10H11N3)[V4O8(PO4)2]
  • M r = 694.92
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1602-efi1.jpg
  • a = 7.4431 (10) Å
  • b = 14.524 (2) Å
  • c = 18.825 (3) Å
  • β = 94.363 (2)°
  • V = 2029.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.04 mm−1
  • T = 173 (2) K
  • 0.20 × 0.20 × 0.04 mm

Data collection

  • Bruker SMART 1K diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.786, T max = 0.922
  • 21687 measured reflections
  • 4652 independent reflections
  • 3678 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.101
  • S = 1.09
  • 4652 reflections
  • 325 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.03 e Å−3
  • Δρmin = −0.76 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038348/tk2326sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038348/tk2326Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work.

supplementary crystallographic information

Comment

The kinked and hydrogen-bonding capable imine 4,4'-dipyridylamine has proven useful in the construction of novel mixed metal oxide phases (LaDuca et al., 2001). In an attempt to extend this chemistry into a metal phosphate oxide system, yellow plate-like crystals of the title compound (I) were obtained.

The asymmetric unit of (I) comprises a cluster of four pentavalent V atoms, four terminal O atoms, four triply bridging O atoms, two phosphate anions and an unligated 4,4'-iminodipyridinium dication (Fig. 1). Each V atom is octahedrally coordinated, with three µ3O atom donors, two O atoms from two different phosphate anions, and one terminal O atom with a formal V=O double bond. The four V=O groups and four µ3 O atoms form a cubane-type [V4O8]4+ cluster.

Quadruply bridging phosphate anions bridge these cationic clusters into anionic [V4O8(PO4)2]n2n- layers that are situated parallel to the bc-planes (Fig. 2). The phosphate groups bracket rhomboid apertures within the layers, with through-space P···P contact distances of 7.2685 (2) and 7.4431 (2) Å. Adjacent [V4O8(PO4)2]n2n- layers stack in an AB pattern into the 3-D structure by N—H···O hydrogen bonding mediated by the protonated pyridyl-N atoms and the central amine groups of the 4,4'-iminodipyridinium cations situated in the interlamellar regions (Fig. 3).

The overall structure of (I) is very similar to a related phase incorporating doubly protonated 4,4'-bipyridine cations (Shi et al., 2004).

Experimental

All chemicals were obtained commercially. Vanadium(V) oxide (140 mg, 0.77 mmol) and 4,4'-dipyridylamine (132 mg, 0.77 mmol) and phosphoric acid (526 mg of an 85.5% aqueous solution, 4.56 mmol) were placed into H2O (10 ml ) in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 72 h and was then allowed to cool to room temperature. Yellow plates of (I) were obtained along with a reddish-brown amorphous solid.

Refinement

All H atoms bound to C atoms were placed in calculated positions with C—H = 0.95 Å and refined in riding mode with Uiso = 1.2Ueq(C). All H atoms bound to N atoms were found via Fourier difference map, restrained with N—H = 0.89 Å, and refined with Uiso=1.2Ueq(N). The largest residual electron density peak of 1.03 e- Å-3 was located 2.25 Å from the H2 atom.

Figures

Fig. 1.
Asymmetric unit of (I), showing 50% probability ellipsoids and atom numbering scheme. Most H atom positions are shown as gray sticks. Color code: dark blue V, violet P, light blue N, red O, black C, pink H.
Fig. 2.
A single [V4P2O16]n2n- layer in (I).
Fig. 3.
Packing diagram illustrating the ABAB layer stacking pattern, which forms the 3-D crystal structure of (I) through hydrogen bonding between the inorganic layers and 4,4'-iminodipyridinium cations.

Crystal data

(C10H11N3)[V4O8(PO4)2]F000 = 1368
Mr = 694.92Dx = 2.275 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21687 reflections
a = 7.4431 (10) Åθ = 1.8–28.2º
b = 14.524 (2) ŵ = 2.04 mm1
c = 18.825 (3) ÅT = 173 (2) K
β = 94.363 (2)ºPlate, yellow
V = 2029.1 (5) Å30.20 × 0.20 × 0.04 mm
Z = 4

Data collection

Bruker SMART 1K diffractometer4652 independent reflections
Radiation source: fine-focus sealed tube3678 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 173(2) Kθmax = 28.2º
ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.786, Tmax = 0.922k = −19→19
21687 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.0382P)2 + 6.7132P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4652 reflectionsΔρmax = 1.03 e Å3
325 parametersΔρmin = −0.76 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
V10.62200 (8)0.45521 (4)0.16868 (3)0.00774 (14)
V20.65671 (8)0.54528 (4)0.33252 (3)0.00778 (14)
V30.91535 (8)0.41272 (4)0.30933 (3)0.00822 (14)
V40.89067 (8)0.58608 (4)0.19276 (3)0.00808 (14)
P10.27074 (12)0.50073 (6)0.25058 (5)0.00875 (19)
P20.74459 (12)0.25121 (6)0.21337 (5)0.00750 (19)
O10.6496 (4)0.53003 (17)0.41627 (14)0.0146 (6)
O20.5880 (3)0.47775 (17)0.08568 (14)0.0141 (6)
O30.9438 (4)0.38002 (18)0.38988 (14)0.0157 (6)
O40.3769 (3)0.45212 (17)0.19477 (14)0.0117 (5)
O50.8869 (3)0.62016 (17)0.11231 (14)0.0144 (5)
O60.6464 (3)0.57326 (16)0.20696 (13)0.0093 (5)
O70.6413 (3)0.32294 (16)0.16610 (13)0.0095 (5)
O80.6626 (3)0.42384 (16)0.29886 (13)0.0093 (5)
O90.3989 (3)0.54901 (17)0.30680 (14)0.0115 (5)
O100.8333 (3)0.18063 (16)0.16577 (13)0.0093 (5)
O110.8977 (3)0.29677 (16)0.26015 (14)0.0101 (5)
O120.6105 (3)0.20382 (16)0.25905 (14)0.0104 (5)
O130.8962 (3)0.54013 (16)0.31834 (14)0.0095 (5)
O140.1453 (3)0.57446 (16)0.21577 (14)0.0114 (5)
O150.1609 (3)0.42794 (16)0.28734 (14)0.0121 (5)
O160.8712 (3)0.46004 (16)0.18407 (13)0.0096 (5)
N11.1851 (5)0.2291 (3)0.1230 (2)0.0247 (8)
H1N1.113 (5)0.212 (3)0.1588 (19)0.030*
N21.5138 (4)0.3207 (2)−0.02781 (18)0.0157 (7)
H2N1.481 (6)0.370 (2)−0.050 (2)0.019*
N31.9274 (4)0.1840 (2)−0.11738 (19)0.0161 (7)
H3N2.016 (6)0.152 (3)−0.136 (2)0.019*
C11.1673 (5)0.3154 (3)0.0975 (2)0.0215 (9)
H11.08130.35440.11460.026*
C21.2741 (5)0.3461 (3)0.0469 (2)0.0174 (8)
H21.25930.40540.02870.021*
C31.4072 (5)0.2878 (3)0.0223 (2)0.0128 (7)
C41.4197 (5)0.1975 (3)0.0485 (2)0.0180 (8)
H41.50270.15660.03170.022*
C51.3089 (6)0.1704 (3)0.0990 (2)0.0223 (9)
H51.31820.11100.11720.027*
C61.9152 (5)0.1759 (3)−0.0472 (2)0.0183 (8)
H61.99690.1389−0.02050.022*
C71.7833 (5)0.2217 (3)−0.0142 (2)0.0159 (8)
H71.77590.21670.03470.019*
C81.6598 (5)0.2760 (2)−0.0557 (2)0.0133 (7)
C91.6813 (5)0.2865 (2)−0.1276 (2)0.0128 (7)
H91.60580.3257−0.15530.015*
C101.8149 (5)0.2386 (2)−0.1577 (2)0.0142 (8)
H101.82790.2440−0.20630.017*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
V10.0072 (3)0.0038 (3)0.0120 (3)0.0000 (2)−0.0006 (2)−0.0003 (2)
V20.0073 (3)0.0036 (3)0.0125 (3)−0.0003 (2)0.0011 (2)−0.0002 (2)
V30.0071 (3)0.0039 (3)0.0134 (3)0.0005 (2)−0.0003 (2)0.0008 (2)
V40.0074 (3)0.0041 (3)0.0128 (3)−0.0002 (2)0.0014 (2)0.0002 (2)
P10.0057 (4)0.0041 (4)0.0165 (5)0.0002 (3)0.0008 (3)−0.0012 (3)
P20.0070 (4)0.0027 (4)0.0130 (4)0.0005 (3)0.0012 (3)−0.0002 (3)
O10.0196 (14)0.0111 (13)0.0135 (14)−0.0002 (10)0.0040 (11)−0.0003 (10)
O20.0155 (13)0.0113 (13)0.0151 (14)0.0003 (10)−0.0013 (10)0.0011 (10)
O30.0179 (14)0.0113 (13)0.0174 (15)0.0027 (10)−0.0014 (11)0.0018 (10)
O40.0079 (12)0.0092 (12)0.0181 (14)−0.0003 (10)0.0007 (10)−0.0043 (10)
O50.0172 (13)0.0104 (13)0.0160 (14)−0.0013 (10)0.0033 (11)0.0007 (10)
O60.0069 (11)0.0049 (11)0.0159 (13)0.0026 (9)0.0003 (9)−0.0015 (9)
O70.0102 (12)0.0027 (11)0.0155 (14)0.0013 (9)−0.0006 (10)−0.0007 (9)
O80.0090 (12)0.0044 (11)0.0147 (13)−0.0019 (9)0.0021 (10)−0.0006 (9)
O90.0069 (12)0.0094 (12)0.0183 (14)−0.0010 (9)0.0019 (10)−0.0049 (10)
O100.0094 (12)0.0039 (11)0.0148 (14)0.0007 (9)0.0020 (10)0.0005 (9)
O110.0084 (11)0.0036 (11)0.0180 (14)0.0005 (9)−0.0012 (10)0.0002 (10)
O120.0095 (12)0.0052 (11)0.0171 (14)0.0000 (9)0.0046 (10)0.0012 (10)
O130.0081 (12)0.0030 (11)0.0175 (14)−0.0002 (9)0.0005 (10)−0.0013 (10)
O140.0076 (11)0.0043 (11)0.0229 (15)−0.0003 (9)0.0050 (10)0.0035 (10)
O150.0080 (12)0.0054 (12)0.0227 (15)0.0000 (9)0.0004 (10)0.0023 (10)
O160.0090 (12)0.0043 (11)0.0157 (13)0.0016 (9)0.0014 (10)−0.0007 (10)
N10.0218 (19)0.033 (2)0.0203 (19)−0.0092 (16)0.0068 (15)−0.0002 (16)
N20.0182 (16)0.0098 (15)0.0197 (18)0.0021 (13)0.0064 (13)0.0039 (13)
N30.0143 (16)0.0121 (16)0.0224 (19)−0.0020 (13)0.0040 (14)−0.0034 (13)
C10.0154 (19)0.029 (2)0.021 (2)−0.0051 (17)0.0042 (16)−0.0103 (17)
C20.0147 (19)0.017 (2)0.021 (2)−0.0027 (15)0.0012 (15)−0.0053 (16)
C30.0111 (17)0.0165 (18)0.0107 (18)−0.0032 (15)0.0006 (13)−0.0017 (14)
C40.0168 (19)0.018 (2)0.019 (2)−0.0013 (15)0.0033 (16)0.0012 (16)
C50.021 (2)0.023 (2)0.023 (2)−0.0058 (17)0.0041 (17)0.0069 (17)
C60.0160 (19)0.0130 (19)0.025 (2)−0.0007 (15)−0.0037 (16)0.0032 (16)
C70.0170 (19)0.0152 (19)0.015 (2)−0.0017 (15)0.0013 (15)0.0018 (15)
C80.0133 (17)0.0080 (17)0.018 (2)−0.0048 (14)−0.0003 (15)−0.0016 (14)
C90.0157 (18)0.0069 (16)0.0155 (19)−0.0057 (14)0.0001 (14)0.0002 (14)
C100.0185 (19)0.0073 (17)0.0171 (19)−0.0077 (14)0.0030 (15)−0.0013 (14)

Geometric parameters (Å, °)

V1—O21.598 (3)P2—O111.536 (2)
V1—O161.857 (2)P2—O71.538 (2)
V1—O61.863 (2)P2—O101.543 (3)
V1—O41.925 (3)N1—C11.345 (6)
V1—O71.927 (2)N1—C51.357 (6)
V1—O82.488 (3)N1—H1N0.93 (4)
V2—O11.597 (3)N2—C31.364 (5)
V2—O131.824 (2)N2—C81.401 (5)
V2—O81.876 (2)N2—H2N0.862 (19)
V2—O91.944 (2)N3—C61.336 (5)
V2—O10i1.967 (2)N3—C101.346 (5)
V2—O62.394 (3)N3—H3N0.90 (5)
V3—O31.588 (3)C1—C21.362 (6)
V3—O131.865 (2)C1—H10.9300
V3—O81.883 (2)C2—C31.408 (5)
V3—O15ii1.917 (3)C2—H20.9300
V3—O111.921 (2)C3—C41.402 (5)
V3—O162.454 (3)C4—C51.363 (6)
V4—O51.592 (3)C4—H40.9300
V4—O161.843 (2)C5—H50.9300
V4—O61.867 (2)C6—C71.373 (6)
V4—O14ii1.919 (2)C6—H60.9300
V4—O12i1.936 (2)C7—C81.404 (5)
V4—O132.454 (3)C7—H70.9300
P1—O151.533 (3)C8—C91.384 (5)
P1—O41.534 (3)C9—C101.371 (5)
P1—O141.535 (3)C9—H90.9300
P1—O91.539 (3)C10—H100.9300
P2—O121.529 (3)
O2—V1—O16103.13 (13)O12—P2—O11111.02 (15)
O2—V1—O6101.14 (12)O12—P2—O7108.15 (14)
O16—V1—O680.68 (10)O11—P2—O7110.88 (13)
O2—V1—O499.88 (13)O12—P2—O10110.73 (14)
O16—V1—O4156.29 (11)O11—P2—O10106.72 (14)
O6—V1—O489.38 (11)O7—P2—O10109.35 (14)
O2—V1—O7100.73 (12)P1—O4—V1135.36 (15)
O16—V1—O788.06 (10)V1—O6—V495.95 (11)
O6—V1—O7157.17 (11)V1—O6—V2102.74 (11)
O4—V1—O793.27 (11)V4—O6—V2101.53 (10)
O2—V1—O8177.48 (11)P2—O7—V1134.08 (15)
O16—V1—O878.94 (10)V2—O8—V395.40 (11)
O6—V1—O877.68 (10)V2—O8—V198.99 (10)
O4—V1—O877.93 (10)V3—O8—V199.46 (10)
O7—V1—O880.71 (9)P1—O9—V2135.01 (16)
O1—V2—O13104.17 (13)P2—O10—V2iii132.20 (15)
O1—V2—O8101.92 (12)P2—O11—V3132.42 (15)
O13—V2—O882.17 (10)P2—O12—V4iii133.42 (15)
O1—V2—O998.26 (13)V2—O13—V397.83 (11)
O13—V2—O9157.22 (12)V2—O13—V4100.65 (10)
O8—V2—O989.43 (10)V3—O13—V4100.26 (11)
O1—V2—O10i97.26 (12)P1—O14—V4iv135.73 (15)
O13—V2—O10i90.42 (10)P1—O15—V3iv136.61 (15)
O8—V2—O10i160.60 (11)V4—O16—V197.02 (11)
O9—V2—O10i90.66 (10)V4—O16—V3100.90 (11)
O1—V2—O6175.87 (11)V1—O16—V3101.46 (11)
O13—V2—O679.67 (10)C1—N1—C5121.2 (4)
O8—V2—O679.97 (10)C1—N1—H1N118 (3)
O9—V2—O678.02 (10)C5—N1—H1N121 (3)
O10i—V2—O681.07 (9)C3—N2—C8127.3 (3)
O3—V3—O13102.45 (13)C3—N2—H2N118 (3)
O3—V3—O8100.68 (13)C8—N2—H2N114 (3)
O13—V3—O880.90 (10)C6—N3—C10121.6 (3)
O3—V3—O15ii100.40 (13)C6—N3—H3N117 (3)
O13—V3—O15ii89.19 (11)C10—N3—H3N122 (3)
O8—V3—O15ii158.20 (11)N1—C1—C2120.5 (4)
O3—V3—O11101.38 (12)N1—C1—H1119.7
O13—V3—O11155.60 (11)C2—C1—H1119.7
O8—V3—O1189.63 (10)C1—C2—C3119.7 (4)
O15ii—V3—O1191.63 (11)C1—C2—H2120.1
O3—V3—O16178.86 (12)C3—C2—H2120.1
O13—V3—O1678.69 (10)N2—C3—C4123.0 (3)
O8—V3—O1679.38 (10)N2—C3—C2118.5 (4)
O15ii—V3—O1679.66 (10)C4—C3—C2118.4 (4)
O11—V3—O1677.48 (10)C5—C4—C3119.2 (4)
O5—V4—O16103.23 (13)C5—C4—H4120.4
O5—V4—O6102.74 (13)C3—C4—H4120.4
O16—V4—O680.95 (10)N1—C5—C4120.8 (4)
O5—V4—O14ii100.81 (13)N1—C5—H5119.6
O16—V4—O14ii90.13 (10)C4—C5—H5119.6
O6—V4—O14ii156.16 (12)N3—C6—C7120.6 (4)
O5—V4—O12i99.84 (12)N3—C6—H6119.7
O16—V4—O12i156.34 (11)C7—C6—H6119.7
O6—V4—O12i88.95 (10)C6—C7—C8118.8 (4)
O14ii—V4—O12i90.67 (11)C6—C7—H7120.6
O5—V4—O13177.67 (11)C8—C7—H7120.6
O16—V4—O1379.09 (10)C9—C8—N2117.8 (3)
O6—V4—O1377.30 (10)C9—C8—C7119.1 (4)
O14ii—V4—O1379.32 (10)N2—C8—C7123.1 (4)
O12i—V4—O1377.83 (10)C10—C9—C8119.3 (4)
O15—P1—O4108.18 (14)C10—C9—H9120.3
O15—P1—O14110.24 (14)C8—C9—H9120.3
O4—P1—O14110.92 (15)N3—C10—C9120.4 (4)
O15—P1—O9109.13 (15)N3—C10—H10119.8
O4—P1—O9110.85 (14)C9—C10—H10119.8
O14—P1—O9107.51 (14)
O15—P1—O4—V1−133.2 (2)O8—V3—O11—P215.9 (2)
O14—P1—O4—V1105.7 (2)O15ii—V3—O11—P2−142.4 (2)
O2—V1—O4—P1−125.5 (2)O16—V3—O11—P2−63.3 (2)
O16—V1—O4—P140.4 (4)O11—P2—O12—V4iii−81.1 (2)
O6—V1—O4—P1−24.3 (2)O7—P2—O12—V4iii157.06 (19)
O7—V1—O4—P1133.0 (2)O10—P2—O12—V4iii37.3 (3)
O8—V1—O4—P153.2 (2)O1—V2—O13—V385.66 (14)
O2—V1—O6—V4−84.30 (13)O8—V2—O13—V3−14.73 (11)
O16—V1—O6—V417.36 (11)O9—V2—O13—V3−84.0 (3)
O4—V1—O6—V4175.75 (12)O10i—V2—O13—V3−176.74 (12)
O7—V1—O6—V478.8 (3)O6—V2—O13—V3−95.89 (11)
O8—V1—O6—V497.97 (11)O1—V2—O13—V4−172.29 (11)
O2—V1—O6—V2172.42 (11)O8—V2—O13—V487.33 (11)
O16—V1—O6—V2−85.91 (11)O9—V2—O13—V418.0 (3)
O4—V1—O6—V272.48 (11)O10i—V2—O13—V4−74.69 (10)
O7—V1—O6—V2−24.5 (3)O6—V2—O13—V46.16 (8)
O8—V1—O6—V2−5.31 (8)O3—V3—O13—V2−84.30 (14)
O5—V4—O6—V184.15 (13)O8—V3—O13—V214.72 (11)
O16—V4—O6—V1−17.49 (11)O15ii—V3—O13—V2175.22 (12)
O14ii—V4—O6—V1−86.7 (3)O11—V3—O13—V283.1 (3)
O12i—V4—O6—V1−176.00 (12)O16—V3—O13—V295.61 (11)
O13—V4—O6—V1−98.25 (11)O3—V3—O13—V4173.31 (11)
O5—V4—O6—V2−171.52 (11)O8—V3—O13—V4−87.67 (10)
O16—V4—O6—V286.85 (11)O15ii—V3—O13—V472.83 (11)
O14ii—V4—O6—V217.6 (3)O11—V3—O13—V4−19.3 (3)
O12i—V4—O6—V2−71.67 (11)O16—V3—O13—V4−6.78 (8)
O13—V4—O6—V26.09 (8)O16—V4—O13—V2−91.04 (12)
O1—V2—O6—V1−110.6 (16)O6—V4—O13—V2−7.98 (11)
O13—V2—O6—V190.76 (11)O14ii—V4—O13—V2176.74 (12)
O8—V2—O6—V16.99 (11)O12i—V4—O13—V283.71 (11)
O9—V2—O6—V1−84.57 (11)O16—V4—O13—V39.03 (11)
O10i—V2—O6—V1−177.17 (12)O6—V4—O13—V392.09 (11)
O13—V2—O6—V4−8.13 (11)O14ii—V4—O13—V3−83.19 (11)
O8—V2—O6—V4−91.91 (11)O12i—V4—O13—V3−176.22 (12)
O9—V2—O6—V4176.53 (12)O15—P1—O14—V4iv−13.6 (3)
O10i—V2—O6—V483.94 (11)O4—P1—O14—V4iv106.2 (2)
O12—P2—O7—V1104.0 (2)O9—P1—O14—V4iv−132.5 (2)
O11—P2—O7—V1−18.0 (3)O4—P1—O15—V3iv−129.8 (2)
O10—P2—O7—V1−135.4 (2)O14—P1—O15—V3iv−8.3 (3)
O2—V1—O7—P2149.9 (2)O9—P1—O15—V3iv109.6 (2)
O16—V1—O7—P246.9 (2)O5—V4—O16—V1−83.47 (14)
O6—V1—O7—P2−13.3 (4)O6—V4—O16—V117.59 (11)
O4—V1—O7—P2−109.4 (2)O14ii—V4—O16—V1175.38 (12)
O8—V1—O7—P2−32.2 (2)O12i—V4—O16—V183.4 (3)
O1—V2—O8—V3−88.41 (13)O13—V4—O16—V196.29 (11)
O13—V2—O8—V314.51 (11)O5—V4—O16—V3173.38 (11)
O9—V2—O8—V3173.26 (12)O6—V4—O16—V3−85.56 (11)
O10i—V2—O8—V382.9 (3)O14ii—V4—O16—V372.23 (11)
O6—V2—O8—V395.33 (10)O12i—V4—O16—V3−19.7 (3)
O1—V2—O8—V1171.10 (11)O13—V4—O16—V3−6.86 (8)
O13—V2—O8—V1−85.99 (11)O2—V1—O16—V481.73 (13)
O9—V2—O8—V172.77 (10)O6—V1—O16—V4−17.64 (11)
O10i—V2—O8—V1−17.6 (4)O4—V1—O16—V4−84.0 (3)
O6—V2—O8—V1−5.16 (8)O7—V1—O16—V4−177.70 (12)
O3—V3—O8—V286.84 (13)O8—V1—O16—V4−96.79 (11)
O13—V3—O8—V2−14.23 (11)O2—V1—O16—V3−175.60 (11)
O15ii—V3—O8—V2−78.2 (3)O6—V1—O16—V385.03 (11)
O11—V3—O8—V2−171.65 (11)O4—V1—O16—V318.7 (3)
O16—V3—O8—V2−94.32 (10)O7—V1—O16—V3−75.03 (11)
O3—V3—O8—V1−173.09 (11)O8—V1—O16—V35.88 (8)
O13—V3—O8—V185.84 (10)O13—V3—O16—V49.06 (11)
O15ii—V3—O8—V121.9 (3)O8—V3—O16—V491.79 (11)
O11—V3—O8—V1−71.58 (10)O15ii—V3—O16—V4−82.19 (11)
O16—V3—O8—V15.75 (8)O11—V3—O16—V4−176.21 (12)
O16—V1—O8—V289.44 (11)O13—V3—O16—V1−90.50 (12)
O6—V1—O8—V26.69 (10)O8—V3—O16—V1−7.77 (11)
O4—V1—O8—V2−85.33 (11)O15ii—V3—O16—V1178.25 (12)
O7—V1—O8—V2179.27 (12)O11—V3—O16—V184.23 (11)
O16—V1—O8—V3−7.62 (10)C5—N1—C1—C2−0.2 (6)
O6—V1—O8—V3−90.37 (11)N1—C1—C2—C3−1.5 (6)
O4—V1—O8—V3177.60 (12)C8—N2—C3—C4−6.6 (6)
O7—V1—O8—V382.21 (11)C8—N2—C3—C2175.7 (4)
O15—P1—O9—V2106.2 (2)C1—C2—C3—N2−179.2 (4)
O4—P1—O9—V2−12.8 (3)C1—C2—C3—C43.0 (5)
O14—P1—O9—V2−134.2 (2)N2—C3—C4—C5179.5 (4)
O1—V2—O9—P1−129.9 (2)C2—C3—C4—C5−2.8 (6)
O13—V2—O9—P140.0 (4)C1—N1—C5—C40.3 (6)
O8—V2—O9—P1−27.9 (2)C3—C4—C5—N11.2 (6)
O10i—V2—O9—P1132.7 (2)C10—N3—C6—C71.8 (6)
O6—V2—O9—P151.9 (2)N3—C6—C7—C80.9 (6)
O12—P2—O10—V2iii−14.4 (2)C3—N2—C8—C9141.3 (4)
O11—P2—O10—V2iii106.6 (2)C3—N2—C8—C7−38.6 (6)
O7—P2—O10—V2iii−133.43 (19)C6—C7—C8—C9−4.0 (5)
O12—P2—O11—V3−82.1 (2)C6—C7—C8—N2175.9 (3)
O7—P2—O11—V338.1 (3)N2—C8—C9—C10−175.4 (3)
O10—P2—O11—V3157.15 (19)C7—C8—C9—C104.5 (5)
O3—V3—O11—P2116.7 (2)C6—N3—C10—C9−1.3 (5)
O13—V3—O11—P2−50.7 (4)C8—C9—C10—N3−1.9 (5)

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) x+1, y, z; (iii) −x+3/2, y−1/2, −z+1/2; (iv) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O100.93 (4)2.14 (4)2.885 (4)136 (4)
N1—H1N···O9iii0.93 (4)2.45 (4)3.018 (5)119 (4)
N2—H2N···O2v0.862 (19)2.35 (2)3.195 (4)166 (4)
N3—H3N···O8vi0.90 (5)2.02 (5)2.902 (4)164 (4)

Symmetry codes: (iii) −x+3/2, y−1/2, −z+1/2; (v) −x+2, −y+1, −z; (vi) x+3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2326).

References

  • Bruker (2003). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • LaDuca, R. L., Rarig, R. S. & Zubieta, J. (2001). Inorg. Chem.40, 607–612. [PubMed]
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software Ltd, Bicester, Oxfordshire, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, F.-N., Paz, F. A. A., Rocha, J., Klinowski, Ja. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp.3031–3037.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography