PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2451.
Published online 2008 November 26. doi:  10.1107/S1600536808037136
PMCID: PMC2959972

[1-(4-Hydroxy­phen­yl)-1H-tetra­zol-5-ylsulfan­yl]acetic acid

Abstract

The title compound, C9H8N4O3S, shows a layer structure constructed from inter­molecular O—H(...)O and O—H(...)N hydrogen bonds. Inter­atomic distances suggest that extensive, but not uniform, π-electron delocalization is present in the tetra­zole rings and extends over the exocyclic C—S bond.

Related literature

For related literature on tetra­zol-5-thione and its derivatives, see: Cea-Olivares et al. (1997 [triangle]); Kim et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2451-scheme1.jpg

Experimental

Crystal data

  • C9H8N4O3S
  • M r = 252.25
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2451-efi1.jpg
  • a = 14.407 (3) Å
  • b = 7.3365 (16) Å
  • c = 21.107 (5) Å
  • V = 2231.0 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 293 K
  • 0.28 × 0.16 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.95, T max = 0.97
  • 18595 measured reflections
  • 2550 independent reflections
  • 1834 reflections with I > 2σ(I)
  • R int = 0.099

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.106
  • S = 1.06
  • 2550 reflections
  • 160 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037136/at2673sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037136/at2673Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Tetrazol-5-thione and its derivatives are interesting ligands from a structural point of view since they can display a wide range of coordination patterns with metal ions. Due to a variety of potential coordination sites, they can act as monodentate (–S or –N) or bidentate (–N, N or –N, S) ligands, forming polymers or interacting with metal ions (Cea-Olivares et al., 1997; Kim et al., 2003).

As shown in Fig.1, the bond lengths within the tetrazole ring exhibit the expected pattern of four long bonds (C7—N1, C7—N4, N3—N4 and N1—N2) together with a short one (N2—N3). In detail, C7—N1 [1.340 (2) Å] and C7—N4 [1.324 (2) Å] are typical for carbon-nitrogen single bonds from 1.336 Å to 1.420 Å, while N3—N4 [1.365 (2) Å] and N1—N2 [1.358 (2) Å] are between the single and double bonds. And the bond distance N2—N3 of 1.283 (2) Å is similar to that of a double bond of 1.25 Å. The bond length of S1—C7 [1.723 (2) Å9 also falls between the double and single bonds. All these interatomic distances suggest that extensive but not uniform π electron delocalization is present in the tetrazole rings and extends over the exocyclic C—S bond.

Experimental

To an aqueous solution of 1-(4-hydroxyphenyl)-5-thiotetrazole (1.940 g, 10.0 mmol) and NaOH (0.80 g, 20.0 mmol) were sequentially added the aqueous solution of chloroactic acid (2.835 g, 30.0 mmol) and NaOH (1.400 g, 35.0 mmol). After stirring for 4 h at 353 K under nitrogen atmosphere, the mixture was cooled to room temperature slowly. Adjusted the pH to 2 by adding 1.0 mol/L HCl, the white deposit appeared rapidly. The solids were filtered and washed with water. The single crystals suitable for X-ray diffraction were obtained by the re-crystallization of sieved solid in the ethanol.

Refinement

The H atoms bonded to C atoms were positioned geometrically and treated as riding, [aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids

Crystal data

C9H8N4O3SF000 = 1040
Mr = 252.25Dx = 1.502 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2531 reflections
a = 14.407 (3) Åθ = 2.4–27.5º
b = 7.3365 (16) ŵ = 0.29 mm1
c = 21.107 (5) ÅT = 293 K
V = 2231.0 (9) Å3Block, colourless
Z = 80.28 × 0.16 × 0.10 mm

Data collection

Bruker APEXII area-detector diffractometer2550 independent reflections
Radiation source: fine-focus sealed tube1834 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.099
T = 293 Kθmax = 27.5º
ω scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −18→18
Tmin = 0.95, Tmax = 0.97k = −9→9
18595 measured reflectionsl = −27→27

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106  w = 1/[σ2(Fo2) + (0.0144P)2 + 1.7635P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2550 reflectionsΔρmax = 0.19 e Å3
160 parametersΔρmin = −0.21 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.51454 (4)0.15070 (9)0.09961 (3)0.05074 (19)
O10.15861 (13)0.3256 (3)0.28120 (9)0.0610 (5)
H10.177 (2)0.270 (4)0.3133 (11)0.073*
O20.75012 (12)0.0102 (3)0.01914 (8)0.0551 (5)
H20.8048 (13)0.010 (4)0.0322 (13)0.066*
O30.72494 (12)0.1471 (3)0.11139 (8)0.0645 (5)
N10.45507 (13)0.4915 (3)0.12461 (10)0.0468 (5)
N20.47350 (16)0.6679 (3)0.10961 (12)0.0637 (6)
N30.54403 (16)0.6653 (3)0.07237 (12)0.0619 (6)
N40.57366 (13)0.4912 (3)0.06208 (10)0.0480 (5)
C10.23393 (16)0.3617 (3)0.24421 (11)0.0441 (5)
C20.21686 (16)0.4284 (3)0.18436 (12)0.0470 (6)
H2A0.15610.44570.17080.056*
C30.28941 (16)0.4695 (3)0.14462 (12)0.0478 (6)
H3A0.27830.51520.10420.057*
C40.37920 (15)0.4418 (3)0.16560 (11)0.0436 (5)
C50.39734 (17)0.3749 (4)0.22511 (12)0.0509 (6)
H5A0.45820.35760.23860.061*
C60.32408 (17)0.3336 (4)0.26463 (12)0.0509 (6)
H6A0.33520.28700.30490.061*
C70.51693 (14)0.3855 (3)0.09473 (11)0.0402 (5)
C80.59818 (15)0.0925 (3)0.03998 (12)0.0465 (6)
H8A0.5826−0.02650.02310.056*
H8B0.59310.17970.00560.056*
C90.69718 (16)0.0887 (3)0.06206 (11)0.0429 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0418 (3)0.0418 (3)0.0686 (4)−0.0030 (3)0.0098 (3)−0.0001 (3)
O10.0472 (10)0.0753 (14)0.0607 (11)0.0032 (9)0.0128 (9)0.0151 (10)
O20.0389 (8)0.0757 (13)0.0508 (10)0.0116 (9)−0.0034 (8)−0.0121 (9)
O30.0490 (11)0.0903 (15)0.0542 (11)0.0078 (10)−0.0099 (8)−0.0217 (11)
N10.0421 (11)0.0421 (12)0.0563 (12)0.0009 (9)0.0080 (9)0.0042 (10)
N20.0611 (14)0.0407 (12)0.0894 (17)0.0025 (11)0.0171 (13)0.0099 (12)
N30.0520 (13)0.0486 (13)0.0850 (16)−0.0031 (11)0.0140 (12)0.0113 (12)
N40.0375 (10)0.0481 (12)0.0584 (12)−0.0027 (9)0.0030 (9)0.0048 (10)
C10.0426 (13)0.0412 (13)0.0484 (13)0.0017 (10)0.0062 (10)−0.0012 (11)
C20.0389 (12)0.0491 (14)0.0529 (14)0.0016 (11)−0.0015 (11)0.0025 (12)
C30.0486 (14)0.0487 (15)0.0460 (13)0.0035 (11)−0.0012 (11)0.0050 (11)
C40.0414 (12)0.0392 (12)0.0502 (14)0.0007 (10)0.0080 (11)0.0005 (11)
C50.0391 (12)0.0588 (16)0.0547 (15)0.0029 (11)−0.0014 (11)0.0016 (12)
C60.0515 (14)0.0555 (15)0.0456 (14)0.0018 (12)0.0002 (11)0.0041 (12)
C70.0319 (11)0.0428 (13)0.0458 (12)−0.0020 (9)0.0000 (10)0.0000 (10)
C80.0394 (12)0.0443 (14)0.0558 (14)0.0005 (10)−0.0043 (11)−0.0080 (11)
C90.0408 (12)0.0445 (13)0.0435 (13)0.0040 (10)−0.0030 (11)0.0003 (11)

Geometric parameters (Å, °)

S1—C71.726 (2)C1—C21.377 (3)
S1—C81.794 (2)C1—C61.384 (3)
O1—C11.363 (3)C2—C31.374 (3)
O1—H10.835 (17)C2—H2A0.9300
O2—C91.317 (3)C3—C41.382 (3)
O2—H20.834 (17)C3—H3A0.9300
O3—C91.195 (3)C4—C51.374 (3)
N1—C71.341 (3)C5—C61.379 (3)
N1—N21.359 (3)C5—H5A0.9300
N1—C41.441 (3)C6—H6A0.9300
N2—N31.285 (3)C8—C91.501 (3)
N3—N41.364 (3)C8—H8A0.9700
N4—C71.321 (3)C8—H8B0.9700
C7—S1—C8100.49 (11)C3—C4—N1118.7 (2)
C1—O1—H1108 (2)C4—C5—C6119.1 (2)
C9—O2—H2109 (2)C4—C5—H5A120.5
C7—N1—N2108.24 (19)C6—C5—H5A120.5
C7—N1—C4129.8 (2)C5—C6—C1119.8 (2)
N2—N1—C4121.94 (19)C5—C6—H6A120.1
N3—N2—N1106.4 (2)C1—C6—H6A120.1
N2—N3—N4111.0 (2)N4—C7—N1108.4 (2)
C7—N4—N3105.86 (19)N4—C7—S1129.03 (18)
O1—C1—C2116.9 (2)N1—C7—S1122.53 (17)
O1—C1—C6122.7 (2)C9—C8—S1115.16 (17)
C2—C1—C6120.4 (2)C9—C8—H8A108.5
C3—C2—C1120.2 (2)S1—C8—H8A108.5
C3—C2—H2A119.9C9—C8—H8B108.5
C1—C2—H2A119.9S1—C8—H8B108.5
C2—C3—C4119.0 (2)H8A—C8—H8B107.5
C2—C3—H3A120.5O3—C9—O2124.2 (2)
C4—C3—H3A120.5O3—C9—C8125.6 (2)
C5—C4—C3121.6 (2)O2—C9—C8110.2 (2)
C5—C4—N1119.7 (2)
C7—N1—N2—N3−0.2 (3)C4—C5—C6—C1−0.7 (4)
C4—N1—N2—N3−179.5 (2)O1—C1—C6—C5−179.3 (2)
N1—N2—N3—N4−0.2 (3)C2—C1—C6—C50.9 (4)
N2—N3—N4—C70.5 (3)N3—N4—C7—N1−0.6 (3)
O1—C1—C2—C3179.4 (2)N3—N4—C7—S1177.64 (19)
C6—C1—C2—C3−0.7 (4)N2—N1—C7—N40.5 (3)
C1—C2—C3—C40.4 (4)C4—N1—C7—N4179.7 (2)
C2—C3—C4—C5−0.2 (4)N2—N1—C7—S1−177.85 (18)
C2—C3—C4—N1−177.7 (2)C4—N1—C7—S11.3 (3)
C7—N1—C4—C570.7 (3)C8—S1—C7—N4−7.9 (2)
N2—N1—C4—C5−110.2 (3)C8—S1—C7—N1170.13 (19)
C7—N1—C4—C3−111.7 (3)C7—S1—C8—C986.2 (2)
N2—N1—C4—C367.4 (3)S1—C8—C9—O3−12.3 (4)
C3—C4—C5—C60.3 (4)S1—C8—C9—O2167.39 (17)
N1—C4—C5—C6177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.835 (17)1.953 (17)2.787 (3)177 (3)
O2—H2···N4ii0.834 (17)1.866 (17)2.699 (3)176 (3)
O2—H2···N3ii0.834 (17)2.60 (2)3.369 (3)154 (3)

Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2673).

References

  • Bruker (2002). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cea-Olivares, R., Ebert, K. E., Silaghi-Dumitrescu, L. & Haiduc, I. (1997). Heteroatom. Chem 8, 317–321.
  • Kim, Y.-J., Han, J.-T., Kang, S., Han, W. S. & Lee, S. W. (2003). Dalton Trans. pp. 3357–3364.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography