PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2468.
Published online 2008 November 29. doi:  10.1107/S1600536808039354
PMCID: PMC2959969

2-Methyl-3-nitro­benzonitrile

Abstract

The asymmetric unit of the title compound, C8H6N2O2, contains two independent mol­ecules, the aromatic rings of which are oriented at a dihedral angle of 1.68 (3)°. Intra­molecular C—H(...)O hydrogen bonds result in the formation of two non-planar six-membered rings, which adopt envelope and twisted conformations. In the crystal structure, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules. There are π–π contacts between the benzene rings [centroid–centroid distances = 3.752 (3) and 3.874 (3) Å].

Related literature

For general background, see: Suzuki et al. (1994 [triangle]). For a related structure, see: Xinhua et al. (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2468-scheme1.jpg

Experimental

Crystal data

  • C8H6N2O2
  • M r = 162.15
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2468-efi1.jpg
  • a = 14.025 (3) Å
  • b = 7.3860 (15) Å
  • c = 15.515 (3) Å
  • β = 101.80 (3)°
  • V = 1573.2 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.970, T max = 0.990
  • 2974 measured reflections
  • 2852 independent reflections
  • 1481 reflections with I > 2σ(I)
  • R int = 0.069
  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.170
  • S = 1.01
  • 2852 reflections
  • 217 parameters
  • H-atom parameters constrained
  • Δρmax = 0.25 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039354/hk2576sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039354/hk2576Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Benzonitrile is an important pharmaceutical intermediate, many of its derivatives have biological activity and be used as a variety of drugs. Benzonitrile was found to be almost inert toward the combined action of nitrogen dioxide and dioxygen at room temperature (Suzuki et al., 1994). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains two crystallographically independent molecules, in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C2-C7) and B (C10-C15) are, of course, planar, and they are oriented at a dihedral angle of 1.68 (3)°. The intramolecular C-H···O hydrogen bonds result in the formation of two nonplanar six-membered rings C (O2/N2/C1-C3/H1A) and D (O4/N4/C9-C11/H9B). Ring C adopts envelope conformation with O2 atom displaced by 0.690 (3) Å from the plane of the other ring atoms, while ring D has twisted conformation.

In the crystal structure, intermolecular C-H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure. The π-π contacts between the benzene rings Cg1···Cg1i and Cg1···Cg2ii [symmetry codes: (i) -x, 2 - y, -z, (ii) 1/2 - x, 1/2 + y, 1/2 - z, where Cg1 and Cg2 are centroids of the rings A (C2-C7) and B (C10-C15), respectively] may further stabilize the structure, with centroid-centroid distances of 3.752 (3) %A and 3.874 (3) %A, respectively.

Experimental

The title compound is synthesized according to the literature method (Xinhua et al., 2003). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H and x = 1.5 for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines.

Crystal data

C8H6N2O2F000 = 672
Mr = 162.15Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 14.025 (3) Åθ = 9–12º
b = 7.3860 (15) ŵ = 0.10 mm1
c = 15.515 (3) ÅT = 294 (2) K
β = 101.80 (3)ºBlock, colorless
V = 1573.2 (6) Å30.30 × 0.20 × 0.10 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.069
Radiation source: fine-focus sealed tubeθmax = 25.3º
Monochromator: graphiteθmin = 1.8º
T = 294(2) Kh = 0→16
ω/2θ scansk = 0→8
Absorption correction: ψ scan(North et al., 1968)l = −18→18
Tmin = 0.970, Tmax = 0.9903 standard reflections
2974 measured reflections every 120 min
2852 independent reflections intensity decay: 1%
1481 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.170  w = 1/[σ2(Fo2) + (0.04P)2 + 1.75P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2852 reflectionsΔρmax = 0.25 e Å3
217 parametersΔρmin = −0.27 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.8903 (3)0.3923 (5)0.9651 (2)0.1022 (11)
O20.8075 (3)0.2944 (5)0.8476 (2)0.1053 (12)
O3−0.2355 (3)−0.1305 (6)0.2733 (2)0.1165 (13)
O4−0.2358 (2)0.0205 (5)0.3874 (2)0.0933 (10)
N10.9792 (3)−0.4285 (6)0.7823 (3)0.0911 (13)
N20.8813 (3)0.2924 (5)0.9055 (2)0.0679 (9)
N30.1646 (3)0.3683 (6)0.4808 (3)0.0913 (12)
N4−0.1954 (3)−0.0405 (6)0.3328 (3)0.0848 (12)
C10.8268 (3)−0.0774 (7)0.8368 (3)0.0923 (16)
H1A0.78350.01710.84700.139*
H1B0.8181−0.18160.87130.139*
H1C0.8128−0.10920.77550.139*
C20.9291 (3)−0.0132 (5)0.8624 (2)0.0510 (9)
C30.9574 (2)0.1578 (5)0.8973 (2)0.0485 (9)
C41.0540 (3)0.2126 (6)0.9250 (2)0.0674 (11)
H4A1.07020.32630.94940.081*
C51.1250 (3)0.0870 (7)0.9140 (3)0.0735 (12)
H5A1.19030.11950.93090.088*
C61.1036 (3)−0.0738 (6)0.8811 (3)0.0687 (11)
H6A1.1534−0.15380.87600.082*
C71.0072 (3)−0.1268 (5)0.8534 (2)0.0538 (9)
C80.9868 (3)−0.3022 (6)0.8160 (3)0.0743 (13)
C9−0.0871 (3)0.2856 (5)0.4071 (3)0.0707 (11)
H9A−0.03900.37090.43510.106*
H9B−0.13110.25950.44550.106*
H9C−0.12280.33600.35310.106*
C10−0.0378 (3)0.1138 (5)0.3880 (2)0.0472 (8)
C11−0.0849 (3)−0.0391 (6)0.3503 (2)0.0573 (10)
C12−0.0389 (3)−0.1889 (6)0.3260 (2)0.0669 (11)
H12A−0.0752−0.28500.29770.080*
C130.0618 (3)−0.1963 (6)0.3435 (3)0.0733 (12)
H13A0.0943−0.29840.32950.088*
C140.1137 (3)−0.0442 (5)0.3834 (2)0.0609 (10)
H14A0.1814−0.04460.39500.073*
C150.0650 (3)0.1033 (5)0.4049 (2)0.0509 (9)
C160.1190 (3)0.2561 (6)0.4443 (3)0.0646 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.115 (3)0.095 (3)0.102 (3)0.006 (2)0.033 (2)−0.014 (2)
O20.098 (3)0.108 (3)0.108 (3)0.018 (2)0.016 (2)−0.001 (2)
O30.099 (3)0.144 (4)0.106 (3)−0.008 (3)0.018 (2)−0.010 (3)
O40.076 (2)0.106 (3)0.102 (2)−0.0009 (19)0.0258 (18)−0.004 (2)
N10.115 (3)0.071 (3)0.087 (3)0.004 (2)0.020 (2)−0.012 (2)
N20.079 (2)0.064 (2)0.065 (2)0.014 (2)0.0264 (19)0.003 (2)
N30.089 (3)0.085 (3)0.101 (3)−0.008 (2)0.023 (2)−0.017 (2)
N40.075 (3)0.097 (3)0.084 (3)−0.011 (2)0.020 (2)0.005 (3)
C10.064 (3)0.116 (4)0.106 (4)−0.020 (3)0.037 (3)−0.017 (3)
C20.056 (2)0.053 (2)0.052 (2)−0.0032 (17)0.0298 (17)0.0022 (17)
C30.055 (2)0.050 (2)0.0460 (19)0.0118 (17)0.0226 (15)−0.0005 (17)
C40.062 (2)0.071 (3)0.073 (3)−0.007 (2)0.0210 (19)0.002 (2)
C50.051 (2)0.091 (3)0.083 (3)−0.006 (2)0.021 (2)0.003 (3)
C60.068 (3)0.076 (3)0.074 (3)0.016 (2)0.041 (2)0.008 (2)
C70.072 (2)0.045 (2)0.054 (2)0.0078 (18)0.0355 (18)0.0067 (17)
C80.099 (4)0.056 (3)0.072 (3)0.006 (3)0.027 (2)0.005 (2)
C90.070 (3)0.067 (3)0.081 (3)0.009 (2)0.031 (2)−0.004 (2)
C100.059 (2)0.0440 (19)0.0454 (18)0.0023 (17)0.0260 (16)0.0087 (16)
C110.053 (2)0.069 (2)0.053 (2)−0.0123 (19)0.0170 (16)0.0077 (19)
C120.084 (3)0.056 (2)0.066 (2)−0.021 (2)0.029 (2)−0.006 (2)
C130.091 (3)0.064 (3)0.075 (3)0.000 (2)0.041 (2)−0.008 (2)
C140.058 (2)0.065 (2)0.064 (2)0.0003 (19)0.0224 (18)−0.007 (2)
C150.055 (2)0.054 (2)0.048 (2)−0.0040 (18)0.0199 (16)0.0038 (17)
C160.064 (3)0.060 (3)0.078 (3)−0.004 (2)0.034 (2)−0.014 (2)

Geometric parameters (Å, °)

O1—N21.169 (4)C5—H5A0.9300
O2—N21.224 (4)C6—C71.388 (5)
O3—N41.182 (5)C6—H6A0.9300
O4—N41.200 (5)C7—C81.425 (6)
N1—C81.063 (5)C9—C101.504 (5)
N2—C31.483 (4)C9—H9A0.9600
N3—C161.125 (5)C9—H9B0.9600
N4—C111.518 (5)C9—H9C0.9600
C1—C21.485 (5)C10—C111.376 (5)
C1—H1A0.9600C10—C151.414 (5)
C1—H1B0.9600C11—C121.372 (5)
C1—H1C0.9600C12—C131.384 (5)
C2—C31.399 (5)C12—H12A0.9300
C2—C71.410 (5)C13—C141.410 (5)
C3—C41.396 (5)C13—H13A0.9300
C4—C51.396 (6)C14—C151.363 (5)
C4—H4A0.9300C14—H14A0.9300
C5—C61.304 (6)C15—C161.426 (5)
O1—N2—O2120.7 (4)C6—C7—C8119.0 (4)
O1—N2—C3121.9 (4)C2—C7—C8119.0 (4)
O2—N2—C3117.4 (4)N1—C8—C7171.6 (6)
O3—N4—O4122.9 (5)C10—C9—H9A109.5
O3—N4—C11116.7 (4)C10—C9—H9B109.5
O4—N4—C11119.0 (4)H9A—C9—H9B109.5
C2—C1—H1A109.5C10—C9—H9C109.5
C2—C1—H1B109.5H9A—C9—H9C109.5
H1A—C1—H1B109.5H9B—C9—H9C109.5
C2—C1—H1C109.5C11—C10—C15114.6 (3)
H1A—C1—H1C109.5C11—C10—C9125.2 (3)
H1B—C1—H1C109.5C15—C10—C9120.2 (3)
C3—C2—C7114.3 (3)C12—C11—C10124.5 (4)
C3—C2—C1125.0 (4)C12—C11—N4117.8 (4)
C7—C2—C1120.7 (4)C10—C11—N4117.7 (4)
C4—C3—C2124.2 (3)C11—C12—C13119.7 (4)
C4—C3—N2116.7 (3)C11—C12—H12A120.1
C2—C3—N2119.1 (3)C13—C12—H12A120.1
C3—C4—C5116.3 (4)C12—C13—C14118.0 (4)
C3—C4—H4A121.9C12—C13—H13A121.0
C5—C4—H4A121.9C14—C13—H13A121.0
C6—C5—C4122.7 (4)C15—C14—C13120.3 (4)
C6—C5—H5A118.7C15—C14—H14A119.9
C4—C5—H5A118.7C13—C14—H14A119.9
C5—C6—C7120.7 (4)C14—C15—C10122.8 (3)
C5—C6—H6A119.7C14—C15—C16119.3 (3)
C7—C6—H6A119.7C10—C15—C16117.9 (3)
C6—C7—C2121.9 (4)N3—C16—C15174.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1A···O20.962.082.768 (6)128
C1—H1C···O2i0.962.383.229 (6)147
C4—H4A···O1ii0.932.473.390 (6)171
C9—H9B···O40.962.352.831 (5)110
C9—H9C···O3iii0.962.503.400 (4)156

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y+1, −z+2; (iii) −x−1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2576).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suzuki, H., Tomaru, J. & Murashima, T. (1994). J. Chem. Soc. Perkin Trans. 1, pp. 2413–2416.
  • Xinhua, P., Naoyuki, F. & Masayuki, M. (2003). Org. Biomol. Chem.1, 2326–2335. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography