PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2330.
Published online 2008 November 13. doi:  10.1107/S1600536808036854
PMCID: PMC2959968

1,3,5-Tri-p-tolyl­pentane-1,5-dione

Abstract

In the crystal structure of the title compound, C26H26O2, the dihedral angle between the tolyl rings at each end of the 1,5-dione chain is 70.3 (1)°; the tolyl group at the middle of the chain makes dihedral angles of 67.8 (2) and 85.1 (2)° with the terminal rings. One benzene C atom and one methyl­ene C atom inter­act with a carbonyl O atom of an adjacent mol­ecule through C—H(...)O hydrogen bonds, forming chains in the crystal.

Related literature

For the details of related structures, see: Burroughes et al. (1990 [triangle]); Smith et al. (2005 [triangle]); Li et al. (2004 [triangle]); Sariciftci et al. (1992 [triangle]). For the synthesis of the title compound, see: Yang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2330-scheme1.jpg

Experimental

Crystal data

  • C26H26O2
  • M r = 370.47
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2330-efi1.jpg
  • a = 10.6611 (19) Å
  • b = 10.3876 (18) Å
  • c = 19.541 (3) Å
  • V = 2164.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.34 × 0.24 × 0.18 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.977, T max = 0.991
  • 8705 measured reflections
  • 2138 independent reflections
  • 1733 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.135
  • S = 1.06
  • 2138 reflections
  • 256 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.12 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036854/wn2290sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036854/wn2290Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

supplementary crystallographic information

Comment

Over the past several decades, linear π-conjugated organic molecules and polymers have attracted considerable interest because of their many promising applications, such as for organic light-emitting diodes, non-linear optical properties, conductivity, photocells, field-effect transistors, and so on, due to their delocalized π systems (Burroughes et al., 1990; Smith et al., 2005; Li et al., 2004; Sariciftci et al., 1992). In the course of our synthesis of the π-conjugated organic molecule, 2,4,6-tri-p-tolyl-pyridine, we synthesized the 1,5-dione intermediate 1,3,5-tri-p-tolyl-pentane-1,5-dione; the 1,5-dione intermediate was then cyclized by adding concentrated aqueous ammonia. We report here the crystal structure of the 1,5-dione intermediate, 1,3,5-tri-p-tolyl-pentane-1,5-dione.

As shown in Fig. 1, the title molecule is non-planar, and the dihedral angles between each pair of the three tolyl rings are 67.8 (2)° [C2–C7, C11–C16], 70.3 (1 ° [C11–C16, C20–C25] and 85.1 (2)° [C2–C7, C20–C25]. The C—C, Car—Car and C═O bond lengths are within their normal ranges. One benzene C atom (C7) and one methylene C atom (C18) interact with a carbonyl group O atom (O2) of an adjacent molecule through C—H···O hydrogen bonds [3.381 (5) Å, 3.460 (5) Å] to form a one-dimensional supramolecular array (Fig. 2).

Experimental

The title compound was synthesized according to a modified procedure (Yang et al., 2005). 4-Methylacetophenone (0.5 g, 4 mmol), 1,3-di-p-tolyl-propenone (0.9 g, 4 mmol) and powdered NaOH (0.6 g, 15 mmol) were crushed together for 2 h, using a pestle and mortar. Recrystallization from ethanol gave colorless prismatic crystals. Yield: 1.2 g (88%).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, 0.97 Å , 0.98 Å, Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine H atoms; 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Figures

Fig. 1.
The molecular structure, with the displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitary radii.
Fig. 2.
A packing diagram of the title structure, showing the intermolecular C—H···O hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C26H26O2F000 = 792
Mr = 370.47Dx = 1.137 Mg m3
Orthorhombic, Pna21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1747 reflections
a = 10.6611 (19) Åθ = 2.2–23.5º
b = 10.3876 (18) ŵ = 0.07 mm1
c = 19.541 (3) ÅT = 295 (2) K
V = 2164.0 (6) Å3Needle, colorless
Z = 40.34 × 0.24 × 0.18 mm

Data collection

Bruker SMART APEX area-detector diffractometer2138 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.031
T = 295(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→7
Tmin = 0.977, Tmax = 0.991k = −12→12
8705 measured reflectionsl = −22→23

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.0666P)2 + 0.0883P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2138 reflectionsΔρmax = 0.14 e Å3
256 parametersΔρmin = −0.12 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1548 (3)0.9299 (3)0.61714 (16)0.0824 (9)
O2−0.0475 (3)0.8225 (3)0.80106 (17)0.0857 (10)
C10.1191 (4)0.7133 (3)0.70389 (19)0.0548 (9)
H10.03880.74530.68640.066*
C20.0994 (4)0.5757 (3)0.72761 (18)0.0529 (9)
C3−0.0047 (4)0.5062 (4)0.7085 (3)0.0791 (12)
H3−0.06760.54650.68350.095*
C4−0.0181 (5)0.3786 (4)0.7256 (3)0.0899 (15)
H4−0.09040.33520.71220.108*
C50.0718 (5)0.3135 (4)0.7616 (3)0.0782 (11)
C60.1716 (4)0.3836 (4)0.7829 (3)0.0769 (12)
H60.23220.34390.80990.092*
C70.1870 (4)0.5121 (4)0.7660 (2)0.0706 (11)
H70.25800.55580.78090.085*
C80.0598 (6)0.1716 (4)0.7788 (3)0.1081 (17)
H8A−0.01750.15690.80260.162*
H8B0.12890.14590.80720.162*
H8C0.06070.12210.73730.162*
C90.2132 (4)0.7156 (4)0.64500 (19)0.0607 (10)
H9A0.29510.69360.66320.073*
H9B0.19010.64870.61270.073*
C100.2252 (4)0.8403 (4)0.6063 (2)0.0606 (10)
C110.3257 (4)0.8509 (3)0.55339 (19)0.0609 (10)
C120.3500 (5)0.9686 (4)0.5225 (3)0.0853 (14)
H120.30151.03980.53390.102*
C130.4443 (5)0.9817 (5)0.4753 (3)0.0933 (16)
H130.45781.06160.45500.112*
C140.5194 (5)0.8798 (5)0.4572 (2)0.0795 (13)
C150.4960 (5)0.7631 (4)0.4875 (2)0.0800 (13)
H150.54490.69230.47570.096*
C160.4018 (5)0.7487 (4)0.5350 (2)0.0738 (12)
H160.38900.66860.55510.089*
C170.6266 (6)0.8948 (6)0.4070 (3)0.1075 (17)
H17A0.64840.81210.38860.161*
H17B0.69790.93080.43020.161*
H17C0.60150.95100.37050.161*
C180.1605 (4)0.8028 (3)0.76181 (19)0.0553 (9)
H18A0.23650.76870.78220.066*
H18B0.18030.88660.74280.066*
C190.0632 (4)0.8189 (3)0.8167 (2)0.0559 (9)
C200.0996 (4)0.8358 (3)0.8894 (2)0.0549 (9)
C210.2152 (4)0.7957 (4)0.9149 (2)0.0653 (10)
H210.27470.76110.88540.078*
C220.2420 (5)0.8068 (4)0.9838 (2)0.0801 (13)
H220.31940.77880.99990.096*
C230.1575 (6)0.8582 (4)1.0291 (2)0.0835 (12)
C240.0430 (6)0.9012 (4)1.0035 (3)0.0887 (14)
H24−0.01530.93811.03290.106*
C250.0156 (4)0.8894 (4)0.9351 (2)0.0752 (13)
H25−0.06170.91820.91920.090*
C260.1894 (7)0.8665 (6)1.1037 (3)0.1172 (19)
H26A0.11940.90161.12830.176*
H26B0.26110.92111.10970.176*
H26C0.20800.78201.12080.176*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.094 (2)0.0654 (17)0.0881 (19)0.0209 (16)−0.0006 (18)0.0156 (16)
O20.0433 (17)0.115 (2)0.099 (2)0.0087 (15)−0.0059 (16)−0.0162 (19)
C10.048 (2)0.0560 (19)0.060 (2)0.0067 (16)−0.0107 (18)0.0025 (16)
C20.050 (2)0.0518 (19)0.057 (2)0.0026 (16)−0.0078 (17)−0.0037 (15)
C30.075 (3)0.072 (2)0.091 (3)−0.006 (2)−0.032 (2)0.004 (2)
C40.088 (3)0.072 (3)0.110 (4)−0.023 (2)−0.024 (3)−0.002 (3)
C50.089 (3)0.0534 (18)0.092 (3)−0.005 (2)0.003 (2)0.005 (2)
C60.068 (3)0.065 (2)0.098 (3)0.001 (2)−0.014 (2)0.021 (2)
C70.055 (2)0.064 (2)0.093 (3)−0.0060 (18)−0.019 (2)0.009 (2)
C80.125 (4)0.061 (2)0.139 (4)−0.010 (2)0.002 (3)0.010 (3)
C90.069 (3)0.0511 (19)0.061 (2)0.0057 (17)−0.0043 (19)0.0020 (16)
C100.070 (3)0.054 (2)0.058 (2)0.0094 (19)−0.015 (2)0.0019 (17)
C110.081 (3)0.053 (2)0.049 (2)−0.0012 (19)−0.0134 (19)0.0049 (15)
C120.107 (4)0.061 (2)0.088 (3)0.007 (2)0.000 (3)0.013 (2)
C130.115 (4)0.068 (3)0.097 (4)−0.014 (3)0.008 (3)0.024 (3)
C140.099 (4)0.081 (3)0.059 (2)−0.019 (3)−0.003 (2)0.000 (2)
C150.097 (4)0.068 (2)0.075 (3)−0.002 (2)0.011 (3)−0.003 (2)
C160.100 (3)0.053 (2)0.068 (2)−0.001 (2)0.006 (3)0.0071 (18)
C170.127 (4)0.107 (4)0.089 (3)−0.028 (3)0.017 (3)−0.002 (3)
C180.047 (2)0.0551 (19)0.064 (2)−0.0002 (16)−0.0026 (18)0.0019 (17)
C190.041 (2)0.0504 (19)0.076 (2)0.0015 (16)0.0002 (19)−0.0025 (17)
C200.052 (2)0.0413 (17)0.072 (2)−0.0100 (16)0.0101 (19)−0.0044 (16)
C210.066 (3)0.066 (2)0.064 (3)0.003 (2)0.002 (2)−0.0019 (19)
C220.095 (4)0.075 (3)0.070 (3)0.004 (3)−0.002 (3)0.008 (2)
C230.124 (3)0.055 (2)0.071 (3)−0.027 (2)0.016 (3)−0.005 (2)
C240.113 (3)0.067 (2)0.086 (3)−0.018 (2)0.032 (3)−0.025 (2)
C250.066 (3)0.061 (2)0.098 (4)−0.007 (2)0.013 (2)−0.021 (2)
C260.176 (6)0.103 (4)0.072 (3)−0.035 (4)0.008 (4)−0.010 (3)

Geometric parameters (Å, °)

O1—C101.214 (4)C13—C141.374 (7)
O2—C191.219 (5)C13—H130.9300
C1—C21.517 (5)C14—C151.371 (7)
C1—C91.527 (6)C14—C171.514 (8)
C1—C181.530 (5)C15—C161.375 (7)
C1—H10.9800C15—H150.9300
C2—C71.368 (5)C16—H160.9300
C2—C31.375 (6)C17—H17A0.9600
C3—C41.373 (6)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—C51.369 (7)C18—C191.501 (6)
C4—H40.9300C18—H18A0.9700
C5—C61.355 (7)C18—H18B0.9700
C5—C81.517 (6)C19—C201.483 (6)
C6—C71.385 (6)C20—C251.383 (6)
C6—H60.9300C20—C211.393 (6)
C7—H70.9300C21—C221.380 (6)
C8—H8A0.9600C21—H210.9300
C8—H8B0.9600C22—C231.371 (7)
C8—H8C0.9600C22—H220.9300
C9—C101.506 (5)C23—C241.392 (8)
C9—H9A0.9700C23—C261.499 (8)
C9—H9B0.9700C24—C251.372 (8)
C10—C111.493 (6)C24—H240.9300
C11—C161.384 (6)C25—H250.9300
C11—C121.389 (6)C26—H26A0.9600
C12—C131.371 (7)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
C2—C1—C9109.6 (3)C15—C14—C13117.7 (5)
C2—C1—C18112.7 (3)C15—C14—C17120.5 (5)
C9—C1—C18111.0 (3)C13—C14—C17121.8 (5)
C2—C1—H1107.8C14—C15—C16121.3 (5)
C9—C1—H1107.8C14—C15—H15119.3
C18—C1—H1107.8C16—C15—H15119.3
C7—C2—C3116.5 (4)C15—C16—C11121.3 (4)
C7—C2—C1121.9 (3)C15—C16—H16119.3
C3—C2—C1121.6 (3)C11—C16—H16119.3
C4—C3—C2121.7 (4)C14—C17—H17A109.5
C4—C3—H3119.2C14—C17—H17B109.5
C2—C3—H3119.2H17A—C17—H17B109.5
C5—C4—C3121.9 (4)C14—C17—H17C109.5
C5—C4—H4119.0H17A—C17—H17C109.5
C3—C4—H4119.0H17B—C17—H17C109.5
C6—C5—C4116.2 (4)C19—C18—C1113.3 (3)
C6—C5—C8121.4 (5)C19—C18—H18A108.9
C4—C5—C8122.3 (5)C1—C18—H18A108.9
C5—C6—C7122.5 (4)C19—C18—H18B108.9
C5—C6—H6118.7C1—C18—H18B108.9
C7—C6—H6118.7H18A—C18—H18B107.7
C2—C7—C6121.1 (4)O2—C19—C20119.3 (4)
C2—C7—H7119.5O2—C19—C18119.6 (4)
C6—C7—H7119.5C20—C19—C18121.1 (3)
C5—C8—H8A109.5C25—C20—C21117.5 (4)
C5—C8—H8B109.5C25—C20—C19119.8 (4)
H8A—C8—H8B109.5C21—C20—C19122.7 (3)
C5—C8—H8C109.5C22—C21—C20120.5 (4)
H8A—C8—H8C109.5C22—C21—H21119.7
H8B—C8—H8C109.5C20—C21—H21119.7
C10—C9—C1116.6 (3)C23—C22—C21121.7 (5)
C10—C9—H9A108.1C23—C22—H22119.2
C1—C9—H9A108.1C21—C22—H22119.1
C10—C9—H9B108.1C22—C23—C24118.0 (5)
C1—C9—H9B108.1C22—C23—C26120.0 (6)
H9A—C9—H9B107.3C24—C23—C26122.0 (5)
O1—C10—C11120.6 (3)C25—C24—C23120.5 (5)
O1—C10—C9121.3 (4)C25—C24—H24119.7
C11—C10—C9118.1 (3)C23—C24—H24119.7
C16—C11—C12116.9 (4)C24—C25—C20121.8 (5)
C16—C11—C10123.0 (3)C24—C25—H25119.1
C12—C11—C10120.0 (4)C20—C25—H25119.1
C13—C12—C11121.1 (5)C23—C26—H26A109.5
C13—C12—H12119.4C23—C26—H26B109.5
C11—C12—H12119.4H26A—C26—H26B109.5
C12—C13—C14121.6 (4)C23—C26—H26C109.5
C12—C13—H13119.2H26A—C26—H26C109.5
C14—C13—H13119.2H26B—C26—H26C109.5
C9—C1—C2—C775.1 (5)C12—C13—C14—C150.7 (8)
C18—C1—C2—C7−49.1 (5)C12—C13—C14—C17−177.8 (5)
C9—C1—C2—C3−101.4 (4)C13—C14—C15—C16−0.8 (7)
C18—C1—C2—C3134.5 (4)C17—C14—C15—C16177.7 (5)
C7—C2—C3—C4−1.7 (7)C14—C15—C16—C110.9 (7)
C1—C2—C3—C4174.9 (4)C12—C11—C16—C15−0.8 (6)
C2—C3—C4—C5−0.8 (8)C10—C11—C16—C15−178.0 (4)
C3—C4—C5—C63.5 (8)C2—C1—C18—C19−64.7 (4)
C3—C4—C5—C8−178.0 (5)C9—C1—C18—C19171.9 (3)
C4—C5—C6—C7−3.8 (8)C1—C18—C19—O2−36.5 (5)
C8—C5—C6—C7177.7 (5)C1—C18—C19—C20145.9 (3)
C3—C2—C7—C61.5 (7)O2—C19—C20—C25−17.7 (5)
C1—C2—C7—C6−175.2 (4)C18—C19—C20—C25159.9 (3)
C5—C6—C7—C21.4 (7)O2—C19—C20—C21160.1 (4)
C2—C1—C9—C10168.5 (3)C18—C19—C20—C21−22.3 (5)
C18—C1—C9—C10−66.3 (4)C25—C20—C21—C221.5 (6)
C1—C9—C10—O1−6.9 (6)C19—C20—C21—C22−176.3 (4)
C1—C9—C10—C11173.5 (3)C20—C21—C22—C23−0.5 (7)
O1—C10—C11—C16−174.6 (4)C21—C22—C23—C24−0.9 (7)
C9—C10—C11—C165.0 (6)C21—C22—C23—C26178.9 (5)
O1—C10—C11—C128.3 (6)C22—C23—C24—C251.4 (7)
C9—C10—C11—C12−172.1 (4)C26—C23—C24—C25−178.4 (4)
C16—C11—C12—C130.8 (7)C23—C24—C25—C20−0.4 (7)
C10—C11—C12—C13178.0 (4)C21—C20—C25—C24−1.0 (6)
C11—C12—C13—C14−0.7 (8)C19—C20—C25—C24176.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.463.381 (5)171 (1)
C18—H18A···O2i0.972.523.460 (5)164 (1)

Symmetry codes: (i) x+1/2, −y+3/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2290).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Mark, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539–541.
  • Li, Y. N., Ding, J. F., Day, M., Tao, Y., Lu, J. P. & D’iorio, M. (2004). Chem. Mater.16, 2165–2173.
  • Sariciftci, N. S., Smilowitz, L. & Heeger, A. J. (1992). Science, 258, 1474–1476. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smith, C. B., Raston, C. L. & Sobolev, A. N. (2005). Green Chem.7, 650–654.
  • Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc.127, 3278–3279. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography