PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1506.
Published online 2008 November 8. doi:  10.1107/S1600536808035551
PMCID: PMC2959967

[μ-10,21-Dimethyl-3,6,14,17-tetra­za­tricyclo­[17.3.1.18,12]tetra­cosa-1(23),2,6,8,10,12 (24),13,17,19,21-deca­ene-23,24-diolato-κ4 N 3,N 6,O 23,O 244 N 14,N 17,O 23,O 24]bis­(perchlorato-κO)dimanganese(II)

Abstract

In the centrosymmetric and dinuclear title complex, [Mn2(C22H22N4O2)(ClO4)2], the two Mn atoms are bridged by two phenolate O atoms of the N4O2 macrocycle with an Mn(...)Mn distance of 2.9228 (11) Å. The distorted square–pyramidal N2O3 coordination geometry is completed by an O atom derived from a perchlorate anion.

Related literature

For related literature, see: Bai et al. (2007 [triangle]); Venegas-Yazigi et al. (2006 [triangle]); Jong et al. (2006 [triangle]); Ki et al. (2006 [triangle]); Tei et al. (2001 [triangle]); Brooker & Croucher (1997 [triangle]); Chattopadhyay et al. (2007 [triangle]). For synthesis, see: Taniguchi (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1506-scheme1.jpg

Experimental

Crystal data

  • [Mn2(C22H22N4O2)(ClO4)2]
  • M r = 683.22
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1506-efi1.jpg
  • a = 8.3129 (10) Å
  • b = 8.3759 (11) Å
  • c = 9.9712 (12) Å
  • α = 81.484 (2)°
  • β = 68.520 (3)°
  • γ = 78.838 (2)°
  • V = 631.56 (14) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.28 mm−1
  • T = 291 (2) K
  • 0.31 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.73, T max = 0.83
  • 3663 measured reflections
  • 2439 independent reflections
  • 1701 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.118
  • S = 0.99
  • 2439 reflections
  • 182 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035551/tk2317sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035551/tk2317Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Science Foundation of China (grant No. 20271039).

supplementary crystallographic information

Comment

Schiff base macrocyclic complexes, derived from the cyclocondensation of 2,6-di-formyl-4-phenol and alkylenediamine in the presence of metal ions, have been extensively studied (Ki et al., 2006; Brooker & Croucher, 1997). The properties of the complexes vary with the differences in the macrocyclic structures and in the nature of the metal ions (Tei et al., 2001; Jong et al., 2006; Venegas-Yazigi et al., 2006). Although the same macrocyclic ligand featured in the title complex, (I), exists in the literature (Bai et al., 2007; Chattopadhyay et al., 2007), the dinuclear Mn(II) complex is novel; the structure is reported herein.

The dinuclear and centrosymmetric structure of (I), Fig. 1, is constructed about a Mn2O2 core. The macrocyclic ligand is hexadentate forming an N4O2 donor set. The Mn ion is coordinated by two endogenous phenolic-O atoms and two azomethine-N atoms that form an approximately square planar geometry. The distorted square pyramidal geometry is completed by a weakly coordinated O atom derived from the perchlorate anion, 2.390 (3) Å. The latter distance is greater than the range of the other Mn-(donor atom) distances, i.e. 1.888 (3) to 1.909 (3) Å. The Mn—Mn distance is 2.9228 (11) Å.

Experimental

2,6-Di-formyl-4-methylphenol was prepared according to the literature method (Taniguchi, 1984). Ethylenediamine (0.8 mmol, 0.048 g) in absolute methanol (10 ml) was added to a methanol solution (10 ml) containing 2,6-di-formyl-4-methylphenol (0.8 mmol, 0.13 g). The solution was stirred vigorously for 3 h in a ice-bath. Afterwards, a methanol solution (5 ml) of Mn(OAc)2.4H2O (0.4 mmol, 0.1 g) was added dropwise over a period of 1 h at room temperature. The mixture was stirred for a further 12 h at ambient temperature. Finally, Mn(ClO4)2.6H2O (0.4 mmol, 0.15 g) dissolved in methanol (5 ml) was added to the mixture and stirred for 8 h at room temperature. The dark-red block-shaped crystals suitable for X-ray diffraction precipitated by slow volatilization over a period of one month.

Refinement

All C-bound H atoms were placed in calculated positions with 0.93–0.97 Å, and included in the refinement in the riding-model approximation, with U(H) set to 1.2–1.5Ueq(C).

Figures

Fig. 1.
A view of (I), showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted for clarity.

Crystal data

[Mn2(C22H22N4O2)(ClO4)2]Z = 1
Mr = 683.22F000 = 346
Triclinic, P1Dx = 1.796 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.3129 (10) ÅCell parameters from 1608 reflections
b = 8.3759 (11) Åθ = 2.5–25.7º
c = 9.9712 (12) ŵ = 1.28 mm1
α = 81.484 (2)ºT = 291 (2) K
β = 68.520 (3)ºBlock, red
γ = 78.838 (2)º0.31 × 0.21 × 0.15 mm
V = 631.56 (14) Å3

Data collection

Bruker SMART APEX CCD diffractometer2439 independent reflections
Radiation source: sealed tube1701 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 291(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −6→10
Tmin = 0.73, Tmax = 0.83k = −9→10
3663 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.118  w = 1/[σ2(Fo2) + (0.0643P)2] where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2439 reflectionsΔρmax = 0.56 e Å3
182 parametersΔρmin = −0.58 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.7059 (6)0.6449 (6)0.4901 (5)0.0464 (10)
C20.5527 (5)0.6225 (5)0.6085 (5)0.0419 (9)
C30.3922 (6)0.7068 (5)0.6049 (4)0.0400 (9)
H30.29080.68550.68060.048*
C40.3786 (6)0.8204 (5)0.4932 (5)0.0458 (10)
C50.5336 (6)0.8403 (6)0.3738 (5)0.0475 (11)
H50.52780.91070.29380.057*
C60.6944 (6)0.7556 (5)0.3752 (5)0.0413 (9)
C70.5468 (6)0.5007 (6)0.7344 (5)0.0476 (10)
H70.43690.48300.79910.057*
C80.8486 (5)0.7881 (5)0.2457 (4)0.0335 (8)
H80.82850.86620.17460.040*
C90.8484 (6)0.2595 (5)0.9110 (5)0.0494 (11)
H9A0.84020.33790.97660.059*
H9B0.86680.15070.95740.059*
C100.6753 (5)0.2848 (5)0.8787 (4)0.0425 (10)
H10A0.66160.18450.84920.051*
H10B0.57660.31240.96550.051*
C110.2057 (6)0.9079 (6)0.4876 (5)0.0494 (11)
H11A0.11310.86520.56670.074*
H11B0.19530.89230.39780.074*
H11C0.19801.02240.49460.074*
Cl10.82655 (13)0.75907 (13)0.86577 (11)0.0428 (3)
Mn10.91488 (7)0.43436 (7)0.64841 (6)0.0349 (2)
N10.6784 (5)0.4187 (4)0.7614 (4)0.0475 (9)
N20.9957 (5)0.2803 (4)0.7770 (4)0.0469 (9)
O10.8573 (4)0.5649 (4)0.4947 (3)0.0449 (7)
O20.9409 (4)0.6619 (4)0.7542 (3)0.0523 (8)
O30.9142 (4)0.8814 (4)0.8771 (3)0.0457 (7)
O40.7776 (4)0.6558 (4)0.9924 (3)0.0476 (7)
O50.6808 (4)0.8267 (4)0.8254 (3)0.0551 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.036 (2)0.059 (3)0.043 (2)0.0015 (19)−0.0149 (18)−0.010 (2)
C20.037 (2)0.039 (2)0.049 (2)−0.0074 (17)−0.0145 (19)−0.0029 (18)
C30.038 (2)0.044 (2)0.042 (2)−0.0069 (17)−0.0163 (17)−0.0121 (17)
C40.052 (3)0.041 (2)0.050 (2)0.0047 (19)−0.028 (2)−0.0122 (19)
C50.038 (2)0.067 (3)0.041 (2)0.005 (2)−0.0200 (19)−0.014 (2)
C60.043 (2)0.0331 (19)0.045 (2)−0.0020 (17)−0.0115 (18)−0.0112 (17)
C70.039 (2)0.055 (3)0.045 (2)−0.012 (2)−0.0046 (19)−0.010 (2)
C80.042 (2)0.0357 (19)0.0332 (19)−0.0088 (16)−0.0277 (17)0.0084 (15)
C90.036 (2)0.042 (2)0.058 (3)0.0016 (18)−0.009 (2)0.008 (2)
C100.043 (2)0.049 (3)0.039 (2)−0.0161 (19)−0.0178 (19)0.0065 (18)
C110.048 (3)0.055 (3)0.044 (2)0.002 (2)−0.016 (2)−0.010 (2)
Cl10.0484 (6)0.0439 (5)0.0378 (5)−0.0173 (4)−0.0121 (4)−0.0020 (4)
Mn10.0334 (3)0.0348 (3)0.0293 (3)−0.0010 (2)−0.0074 (2)0.0043 (2)
N10.042 (2)0.044 (2)0.051 (2)−0.0087 (17)−0.0114 (17)0.0014 (16)
N20.049 (2)0.045 (2)0.0361 (18)0.0054 (17)−0.0119 (16)0.0038 (16)
O10.0312 (14)0.0499 (17)0.0430 (16)0.0020 (12)−0.0097 (12)0.0100 (13)
O20.0483 (18)0.0482 (17)0.0523 (18)−0.0217 (14)0.0020 (15)−0.0113 (14)
O30.0583 (18)0.0484 (17)0.0359 (15)−0.0247 (14)−0.0123 (13)−0.0094 (12)
O40.0412 (16)0.0527 (18)0.0475 (17)−0.0193 (13)−0.0142 (13)0.0133 (14)
O50.0497 (18)0.0483 (18)0.0445 (17)0.0108 (14)−0.0063 (14)0.0157 (14)

Geometric parameters (Å, °)

C1—O11.321 (5)C9—H9B0.9700
C1—C61.383 (6)C10—N11.492 (5)
C1—C21.406 (6)C10—H10A0.9700
C2—C31.393 (6)C10—H10B0.9700
C2—C71.488 (6)C11—H11A0.9600
C3—C41.376 (6)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.417 (6)Cl1—O41.394 (3)
C4—C111.499 (6)Cl1—O51.405 (3)
C5—C61.390 (6)Cl1—O31.406 (3)
C5—H50.9300Cl1—O21.413 (3)
C6—C81.485 (6)Mn1—N21.888 (3)
C7—N11.269 (6)Mn1—N11.893 (4)
C7—H70.9300Mn1—O11.900 (3)
C8—N2i1.262 (5)Mn1—O1i1.909 (3)
C8—H80.9300Mn1—O22.391 (3)
C9—N21.460 (5)Mn1—Mn1i2.9228 (11)
C9—C101.556 (6)N2—C8i1.262 (5)
C9—H9A0.9700O1—Mn1i1.909 (3)
O1—C1—C6121.9 (4)C4—C11—H11B109.5
O1—C1—C2119.0 (4)H11A—C11—H11B109.5
C6—C1—C2119.0 (4)C4—C11—H11C109.5
C3—C2—C1119.4 (4)H11A—C11—H11C109.5
C3—C2—C7116.3 (4)H11B—C11—H11C109.5
C1—C2—C7124.0 (4)O4—Cl1—O5110.61 (18)
C4—C3—C2122.3 (4)O4—Cl1—O3112.37 (19)
C4—C3—H3118.8O5—Cl1—O3111.3 (2)
C2—C3—H3118.8O4—Cl1—O2107.3 (2)
C3—C4—C5117.5 (4)O5—Cl1—O2106.4 (2)
C3—C4—C11122.3 (4)O3—Cl1—O2108.58 (18)
C5—C4—C11119.9 (4)N2—Mn1—N191.90 (16)
C6—C5—C4120.6 (4)N2—Mn1—O1170.28 (14)
C6—C5—H5119.7N1—Mn1—O193.45 (14)
C4—C5—H5119.7N2—Mn1—O1i93.60 (13)
C1—C6—C5120.9 (4)N1—Mn1—O1i168.66 (16)
C1—C6—C8123.0 (4)O1—Mn1—O1i79.78 (13)
C5—C6—C8116.1 (4)N2—Mn1—O293.10 (15)
N1—C7—C2125.8 (4)N1—Mn1—O297.47 (14)
N1—C7—H7117.1O1—Mn1—O294.23 (13)
C2—C7—H7117.1O1i—Mn1—O292.12 (12)
N2i—C8—C6126.1 (3)N2—Mn1—Mn1i132.98 (11)
N2i—C8—H8117.0N1—Mn1—Mn1i132.81 (12)
C6—C8—H8117.0O1—Mn1—Mn1i40.01 (8)
N2—C9—C10110.2 (4)O1i—Mn1—Mn1i39.77 (8)
N2—C9—H9A109.6O2—Mn1—Mn1i94.14 (8)
C10—C9—H9A109.6C7—N1—C10126.4 (4)
N2—C9—H9B109.6C7—N1—Mn1125.2 (3)
C10—C9—H9B109.6C10—N1—Mn1108.2 (3)
H9A—C9—H9B108.1C8i—N2—C9125.4 (3)
N1—C10—C9109.9 (3)C8i—N2—Mn1126.2 (3)
N1—C10—H10A109.7C9—N2—Mn1108.3 (3)
C9—C10—H10A109.7C1—O1—Mn1130.6 (3)
N1—C10—H10B109.7C1—O1—Mn1i129.0 (3)
C9—C10—H10B109.7Mn1—O1—Mn1i100.22 (13)
H10A—C10—H10B108.2Cl1—O2—Mn1134.41 (17)
C4—C11—H11A109.5

Symmetry codes: (i) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2317).

References

  • Bai, J.-L., Zhou, H., Pan, Z.-Q. & Meng, X.-G. (2007). Acta Cryst. E63, m2641.
  • Brooker, S. & Croucher, P. D. (1997). Chem. Commun. pp. 459–460.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chattopadhyay, T., Banu, K. S., Banerjee, A., Ribas, J., Majee, A., Nethaji, M. & Das, D. (2007). J. Mol. Struct.833, 13–22.
  • Jong, C. B., Chung, H. H. & Ki, J. K. (2006). Inorg. Chem. Commun.9, 171–174.
  • Ki, J. K., Duk, S. J., Duk, S. K., Chi, K. C., Ki, M. P. & Jong, C. B. (2006). Bull. Korean Chem. Soc.27, 1747–1751.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2684.
  • Tei, L., Blake, A. J., Devillanova, F. A., Garau, A., Lippolis, V., Wilson, C. & Schröder, M. (2001). Chem. Commun. pp. 2582–2583.
  • Venegas-Yazigi, D., Cortés, S., Paredes-García, V., Peña, O., Ibañez, A., Baggio, R. & Spodine, E. (2006). Polyhedron, 25, 2072–2082.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography