PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1607–m1608.
Published online 2008 November 22. doi:  10.1107/S1600536808028511
PMCID: PMC2959964

Di-μ2-chlorido-bis­[aqua­(2,2′-bipyridine-4,4′-dicarboxylic acid-κ2 N,N′)(nitrato-κO)copper(II)]

Abstract

In the title compound, [Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2], which consists of a chloride-bridged CuII dimer, the Cu atom is in a distorted octa­hedral environment defined by two N atoms from the 2,2′-bipyridine-4,4′-dicarboxylic acid ligand (H2bpdca), two bridging chlorido ligands, and two O atoms from an equatorial water mol­ecule and an axial nitrate anion, respectively. The two halves of the dimeric unit are related by an inversion centre at the midpoint between the two Cu atoms. Both carboxylic acid groups in the H2bpdca ligand remain protonated, as confirmed by the two sets of C—O bond lengths. The dinuclear mol­ecules are linked into a three-dimensional network via inter­molecular hydrogen bonds.

Related literature

For related literature, see: Aitipamula et al. (2002 [triangle]); Batten & Robson (1998 [triangle]); Desiraju (2002 [triangle]); Etter (1990 [triangle]); Han et al. (2007 [triangle]); Holliday & Mirkin (2001 [triangle]); Kitagawa et al. (2004 [triangle]); Kumar et al. (2006 [triangle]); Liu et al. (2002 [triangle]); Moulton & Zaworotko (2001 [triangle]); Ockwig et al. (2005 [triangle]); Schareina et al. (2001a [triangle],b [triangle]); Tynan et al. (2004 [triangle], 2005 [triangle]); Wu (2006 [triangle]); Wu et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1607-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2]
  • M r = 846.46
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1607-efi1.jpg
  • a = 6.9500 (7) Å
  • b = 8.1490 (7) Å
  • c = 13.5480 (10) Å
  • α = 92.315 (2)°
  • β = 103.384 (4)°
  • γ = 98.556 (3)°
  • V = 735.91 (11) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.72 mm−1
  • T = 295 (2) K
  • 0.30 × 0.24 × 0.20 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.627, T max = 0.725
  • 5180 measured reflections
  • 3301 independent reflections
  • 3116 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.106
  • S = 1.11
  • 3301 reflections
  • 238 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.72 e Å−3

Data collection: RAPID-AUTO (Rigaku 2001 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028511/rt2020sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028511/rt2020Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Beijing University of Chemical Technology.

supplementary crystallographic information

Comment

In the field of crystal engineering, based on the metal–ligand coordination interactions, a large number of coordination polymers have been designed and prepared to develop novel functional materials. (For example, Batten & Robson, 1998; Kitagawa et al., 2004; Ockwig et al., 2005). Hydrogen bonding interactions, because of its unique strength and direction, have been widely explored as one of the principal means to control organic molecular assemblies (Desiraju, 2002; Moulton & Zaworotko 2001). As an important synthetic strategy, the combination of both metal–ligand coordination and hydrogen bonding in designing various supramolecular architectures has been extensively used over the past few years (Aitipamula et al., 2002; Holliday & Mirkin, 2001; Kumar et al., 2006; Han et al., 2007). For example, 2,2'-bipyridine-4,4'-dicarboxylic acid (H2bpdca), which possesses two N atoms and carboxylic acid groups, has been employed as ligand with the N atoms chelating a metal ion and the carboxylic acid forming either self-complementary hydrogen bonds to neighboring ligands, or coordinating directly to adjacent metal ions following deprotonation (Tynan et al., 2005; Tynan et al., 2004; Liu et al., 2002; Schareina et al., 2001a; Schareina et al., 2001b; Wu, 2006; Wu et al., 2006). Here we report a copper(II)–H2bpdca complex, [Cu2(C12H8N2O4)2Cl2(NO3)2(H2O)2], (I), with a three-dimensional H-bonding network structure induced by the carboxylic acid groups and water molecules acting as hydrogen-bond donors.

As shown in Fig. 1, the structure of (I) consists of a chloride-bridged Cu(II) dimer, in which the H2bpdca ligand remains protonated. The two halves of the dimer unit are related by an inversion centre at the midpoint between the two Cu atoms. Each copper atom has a distorted octahedral geometry, with the equatorial positions utilised by two chelating nitrogen atoms from the H2bpdca ligand (average of Cu—N bond length, 2.001 (2) Å), one bridging chlorido ligand (Cu1—Cl1 = 2.2513 (6) Å) and one coordinated water molecule (Cu1—O1 = 1.9828 (21) Å). In the elongated axial direction, one site is occupied by another bridging chloride atom (Cu1—Cl1i = 2.7757 (8) Å, symmetry code: (i), 1 - x, -y, -z), and the other site by an O atom from a nitrate anion (Cu1—O6 = 2.5280 (4) Å). Both bond lengths are longer than those corresponding to usual coordination bonds, indicating a weak coordination. The two pyridyl rings of the H2bpdca ligand are slightly twisted, as indicated by its dihedral angle (4.46 (12)°), while the copper-to-copper separation in the dimeric unit is 3.6698 (5) Å. The copper atoms and the bridging chloride atoms occupy the same plane as required by the symmetry, and results in a chloride–chloride separation of 3.4755 (9) Å. The carboxylic group at C11 is almost coplanar with the attached pyridyl ring (dihedral angle ca 3.19°), whereas the carboxylic group at C12 is slightly twisted by ca 12.31° toward the corresponding pyridyl ring. As expected for protonated carboxylic acids, there are two sets of C—O bond lengths: the carbon to hydroxyl oxygen single bond, which average 1.3095 Å, and the carbon to carbonyl oxygen double bond, which average 1.2013 Å. The coordinated nitrato and chlorido ligands provide the charge balance for the title complex.

The dimeric unit is extended into a three-dimensional network through hydrogen bond interactions (Table 1). Double intermolecular hydrogen bonds (O2—H2A···O4) are formed by means of the double carboxylic acid self-complementary interaction of an adjacent complex, resulting in a centrosymmetric R22(22) motif (Etter 1990), with the two O3 carbonyl oxygen atoms pointing toward the middle of the ring. Due to its position, the O3 atom can act as a hydrogen bond acceptor from two pyridyl C—H groups (C4—H4···O3 and C7—H7···O3) which further supports the R22(22) motif. In addition, the coordinated water molecule, O1, is a hydrogen bond donor to the Cl1 atom on adjacent complexes (O1—H1WA···Cl1). These intermolecular hydrogen bonds result in a two-dimensional structure (Fig. 2). Further hydrogen bonding between the non-coordinated O7 atom of nitrate anion and a carboxylic acid group (O5—H5A···O7), and between the O8 atom of same nitrate anion and water molecule of an adjacent complex (O1—H1WB···O8), links the two-dimensional frame into a three-dimensional network (Fig. 3).

Experimental

A mixture of CuCl2.2H2O (0.0170 g, 0.1 mmol), H2bpdca (0.0244 g, 0.1 mmol) in the molar ratio 1:1, was placed in a 25 ml Teflon-lined digestion bomb with 4 ml distilled water and 1 ml concentrated HNO3. The sealed vessel was heated to 473 K for 10 h and then slowly cooled to room temperature (3 K h-1). The resulting blue solution was allowed to stand in air at room temperature for one month, yielding blue crystals in 46% yield based on H2bpdca. IR spectroscopic analysis (solid KBr disc, ν, cm-1): 3410.3(s), 3179.0(m) 1731.2 (vs), 1694.4(m), 1625.5 (m), 1560.5(m), 1403.8 (vs), 1382.1 (vs), 1235.3 (m), 1209.8 (s), 1036.3 (w), 824.0 (w), 660.6 (s).

Refinement

All H atoms attached to C atoms were placed in geometrically idealized positions, with Csp3—H = 0.97 Å and Csp2—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The remaining H atoms attached to O atoms were located in difference Fourier maps and their positional parameters were refined with O—H distances restrained to 0.77 (4)–0.82 (2) Å with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.
View of a fragment of the title compound, showing 50% probability displacement ellipsoids for non-H atoms. H atoms are shown as small spheres of arbitrary size.
Fig. 2.
The two-dimensional network formed by hydrogen-bonding interactions (blue dotted lines). For clarity, H atoms attached to C atoms have been omitted.
Fig. 3.
The three-dimensional packing of (I), viewed down the b axis, showing a network structure connected by hydrogen bonds (blue dotted lines). All H atoms have been omitted for clarity.

Crystal data

[Cu2Cl2(NO3)2(C12H8N2O4)2(H2O)2]Z = 1
Mr = 846.46F000 = 426
Triclinic, P1Dx = 1.91 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 6.9500 (7) ÅCell parameters from 6664 reflections
b = 8.1490 (7) Åθ = 1.6–27.5º
c = 13.5480 (10) ŵ = 1.72 mm1
α = 92.315 (2)ºT = 295 (2) K
β = 103.384 (4)ºBlock, blue
γ = 98.556 (3)º0.30 × 0.24 × 0.20 mm
V = 735.91 (11) Å3

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometerRint = 0.021
ω oscillation scansθmax = 27.5º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)θmin = 1.6º
Tmin = 0.627, Tmax = 0.725h = −9→9
5180 measured reflectionsk = −10→10
3301 independent reflectionsl = −17→17
3116 reflections with I > 2σ(I)

Refinement

Refinement on F23 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035  w = 1/[σ2(Fo2) + (0.0591P)2 + 0.6991P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.67 e Å3
3301 reflectionsΔρmin = −0.72 e Å3
238 parametersExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O60.1325 (5)0.1681 (3)0.1741 (2)0.0691 (8)
Cu10.37742 (4)0.02464 (4)0.10473 (2)0.02764 (12)
Cl10.30801 (9)0.10642 (8)−0.05463 (4)0.03186 (15)
N10.4725 (3)−0.0507 (2)0.24369 (15)0.0250 (4)
N20.5689 (3)0.2299 (3)0.16874 (16)0.0274 (4)
N30.1423 (4)0.3230 (4)0.1725 (2)0.0465 (6)
O10.1477 (3)−0.1609 (3)0.07198 (16)0.0380 (4)
O20.9538 (3)0.7885 (2)0.28428 (16)0.0396 (5)
O31.0190 (4)0.6606 (3)0.42733 (17)0.0536 (6)
O40.8547 (3)−0.0671 (3)0.60227 (16)0.0454 (5)
O50.6480 (3)−0.3083 (2)0.57019 (15)0.0395 (5)
O70.2266 (4)0.4133 (3)0.25273 (16)0.0443 (5)
O80.0715 (7)0.3831 (6)0.0958 (2)0.1053 (15)
C10.6048 (5)0.3690 (3)0.1234 (2)0.0368 (6)
H10.5460.3710.05450.044*
C20.7267 (5)0.5113 (3)0.1753 (2)0.0369 (6)
H20.75050.6070.14190.044*
C30.8119 (4)0.5075 (3)0.27753 (19)0.0269 (5)
C40.7771 (4)0.3630 (3)0.32546 (18)0.0264 (5)
H40.83470.35850.39430.032*
C50.6542 (3)0.2250 (3)0.26844 (17)0.0238 (4)
C60.6057 (3)0.0642 (3)0.31031 (18)0.0241 (4)
C70.6879 (4)0.0294 (3)0.40842 (18)0.0256 (5)
H70.77930.10960.45320.031*
C80.6319 (4)−0.1272 (3)0.43924 (18)0.0247 (4)
C90.4958 (4)−0.2451 (3)0.37088 (19)0.0289 (5)
H90.4564−0.35070.39030.035*
C100.4201 (4)−0.2024 (3)0.27330 (19)0.0287 (5)
H100.3303−0.28140.22690.034*
C110.9409 (4)0.6586 (3)0.3387 (2)0.0298 (5)
C120.7236 (4)−0.1641 (3)0.54572 (19)0.0276 (5)
H1WA0.050 (4)−0.139 (5)0.090 (3)0.041*
H1WB0.113 (5)−0.204 (4)0.0152 (17)0.041*
H2A1.017 (5)0.861 (5)0.322 (3)0.041*
H5A0.694 (5)−0.333 (4)0.6256 (17)0.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O60.0764 (18)0.0465 (14)0.083 (2)−0.0156 (12)0.0381 (16)−0.0248 (14)
Cu10.03280 (18)0.02355 (17)0.02061 (17)−0.00261 (12)−0.00096 (12)0.00132 (11)
Cl10.0367 (3)0.0334 (3)0.0226 (3)0.0066 (2)0.0004 (2)0.0039 (2)
N10.0277 (9)0.0206 (9)0.0236 (9)−0.0004 (7)0.0029 (7)0.0005 (7)
N20.0319 (10)0.0229 (9)0.0229 (10)−0.0007 (8)0.0013 (8)0.0011 (8)
N30.0386 (13)0.0620 (18)0.0352 (13)0.0166 (12)−0.0014 (10)−0.0100 (12)
O10.0364 (10)0.0346 (10)0.0334 (10)−0.0049 (8)−0.0035 (8)−0.0017 (8)
O20.0515 (12)0.0230 (9)0.0329 (10)−0.0102 (8)−0.0024 (9)0.0017 (8)
O30.0758 (16)0.0345 (11)0.0312 (11)−0.0132 (10)−0.0119 (10)0.0039 (9)
O40.0549 (13)0.0326 (10)0.0323 (10)−0.0135 (9)−0.0098 (9)0.0055 (8)
O50.0518 (12)0.0285 (9)0.0276 (10)−0.0093 (8)−0.0032 (8)0.0098 (8)
O70.0621 (13)0.0303 (10)0.0298 (10)0.0002 (9)−0.0052 (9)−0.0007 (8)
O80.145 (3)0.132 (3)0.0376 (15)0.086 (3)−0.0179 (18)−0.0050 (18)
C10.0498 (15)0.0273 (12)0.0242 (12)−0.0046 (11)−0.0033 (11)0.0058 (10)
C20.0501 (16)0.0250 (12)0.0279 (13)−0.0043 (11)−0.0001 (11)0.0078 (10)
C30.0278 (11)0.0219 (11)0.0267 (12)−0.0015 (9)0.0018 (9)0.0004 (9)
C40.0298 (11)0.0229 (11)0.0219 (11)−0.0017 (9)0.0002 (9)0.0032 (9)
C50.0269 (10)0.0211 (10)0.0216 (11)0.0005 (8)0.0042 (8)0.0031 (8)
C60.0254 (10)0.0204 (10)0.0245 (11)−0.0006 (8)0.0049 (9)0.0002 (8)
C70.0290 (11)0.0202 (10)0.0238 (11)−0.0020 (8)0.0023 (9)0.0008 (8)
C80.0286 (11)0.0207 (10)0.0225 (11)−0.0001 (8)0.0038 (9)0.0014 (8)
C90.0327 (12)0.0205 (11)0.0293 (12)−0.0031 (9)0.0036 (9)0.0030 (9)
C100.0316 (12)0.0213 (11)0.0278 (12)−0.0038 (9)0.0020 (9)0.0000 (9)
C110.0319 (12)0.0235 (11)0.0294 (12)−0.0027 (9)0.0027 (10)0.0005 (9)
C120.0327 (12)0.0216 (11)0.0256 (11)0.0002 (9)0.0034 (9)0.0034 (9)

Geometric parameters (Å, °)

O6—N31.255 (4)O5—C121.302 (3)
O6—Cu12.528 (3)O5—H5A0.790 (18)
Cu1—O11.982 (2)C1—C21.387 (4)
Cu1—N11.999 (2)C1—H10.93
Cu1—N22.002 (2)C2—C31.378 (4)
Cu1—Cl12.2511 (7)C2—H20.93
Cu1—Cl1i2.7757 (8)C3—C41.384 (3)
N1—C101.340 (3)C3—C111.501 (3)
N1—C61.355 (3)C4—C51.389 (3)
N2—C11.330 (3)C4—H40.93
N2—C51.348 (3)C5—C61.473 (3)
N3—O81.199 (4)C6—C71.379 (3)
N3—O71.256 (3)C7—C81.387 (3)
O1—H1WA0.819 (18)C7—H70.93
O1—H1WB0.802 (18)C8—C91.389 (3)
O2—C111.318 (3)C8—C121.498 (3)
O2—H2A0.77 (4)C9—C101.384 (4)
O3—C111.196 (3)C9—H90.93
O4—C121.207 (3)C10—H100.93
N3—O6—Cu1119.8 (2)C2—C3—C4119.9 (2)
O1—Cu1—N191.33 (8)C2—C3—C11121.1 (2)
O1—Cu1—N2163.29 (9)C4—C3—C11119.0 (2)
N1—Cu1—N281.03 (8)C3—C4—C5118.5 (2)
O1—Cu1—Cl192.53 (6)C3—C4—H4120.8
N1—Cu1—Cl1172.93 (6)C5—C4—H4120.8
N2—Cu1—Cl196.72 (6)N2—C5—C4121.5 (2)
O1—Cu1—O682.22 (9)N2—C5—C6114.76 (19)
N1—Cu1—O687.84 (10)C4—C5—C6123.8 (2)
N2—Cu1—O682.67 (9)N1—C6—C7121.6 (2)
Cl1—Cu1—O698.54 (8)N1—C6—C5114.4 (2)
C10—N1—C6119.4 (2)C7—C6—C5124.0 (2)
C10—N1—Cu1125.70 (16)C6—C7—C8118.9 (2)
C6—N1—Cu1114.87 (16)C6—C7—H7120.5
C1—N2—C5119.5 (2)C8—C7—H7120.5
C1—N2—Cu1125.61 (17)C7—C8—C9119.5 (2)
C5—N2—Cu1114.73 (16)C7—C8—C12118.5 (2)
O8—N3—O6120.4 (3)C9—C8—C12122.0 (2)
O8—N3—O7120.8 (3)C10—C9—C8118.6 (2)
O6—N3—O7118.8 (3)C10—C9—H9120.7
Cu1—O1—H1WA113 (3)C8—C9—H9120.7
Cu1—O1—H1WB118 (3)N1—C10—C9121.9 (2)
H1WA—O1—H1WB110 (4)N1—C10—H10119
C11—O2—H2A106 (3)C9—C10—H10119
C12—O5—H5A116 (3)O3—C11—O2124.3 (2)
N2—C1—C2122.3 (2)O3—C11—C3123.3 (2)
N2—C1—H1118.9O2—C11—C3112.3 (2)
C2—C1—H1118.9O4—C12—O5124.2 (2)
C3—C2—C1118.4 (2)O4—C12—C8122.1 (2)
C3—C2—H2120.8O5—C12—C8113.7 (2)
C1—C2—H2120.8
N3—O6—Cu1—O1−149.3 (3)Cu1—N2—C5—C4−174.51 (18)
N3—O6—Cu1—N1119.1 (3)C1—N2—C5—C6−179.3 (2)
N3—O6—Cu1—N237.8 (3)Cu1—N2—C5—C65.3 (3)
N3—O6—Cu1—Cl1−57.9 (3)C3—C4—C5—N2−0.3 (4)
O1—Cu1—N1—C1018.5 (2)C3—C4—C5—C6179.9 (2)
N2—Cu1—N1—C10−176.4 (2)C10—N1—C6—C7−0.6 (3)
Cl1—Cu1—N1—C10−104.5 (5)Cu1—N1—C6—C7−178.66 (18)
O6—Cu1—N1—C10100.7 (2)C10—N1—C6—C5178.9 (2)
O1—Cu1—N1—C6−163.57 (17)Cu1—N1—C6—C50.9 (3)
N2—Cu1—N1—C61.50 (16)N2—C5—C6—N1−4.1 (3)
Cl1—Cu1—N1—C673.4 (5)C4—C5—C6—N1175.7 (2)
O6—Cu1—N1—C6−81.41 (17)N2—C5—C6—C7175.4 (2)
O1—Cu1—N2—C1−115.2 (3)C4—C5—C6—C7−4.7 (4)
N1—Cu1—N2—C1−178.8 (2)N1—C6—C7—C8−0.1 (4)
Cl1—Cu1—N2—C17.9 (2)C5—C6—C7—C8−179.5 (2)
O6—Cu1—N2—C1−89.9 (2)C6—C7—C8—C90.3 (4)
O1—Cu1—N2—C559.8 (4)C6—C7—C8—C12179.4 (2)
N1—Cu1—N2—C5−3.82 (17)C7—C8—C9—C100.2 (4)
Cl1—Cu1—N2—C5−177.06 (16)C12—C8—C9—C10−179.0 (2)
O6—Cu1—N2—C585.14 (19)C6—N1—C10—C91.1 (4)
Cu1—O6—N3—O880.0 (4)Cu1—N1—C10—C9178.90 (19)
Cu1—O6—N3—O7−100.2 (3)C8—C9—C10—N1−0.8 (4)
C5—N2—C1—C2−0.5 (4)C2—C3—C11—O3−179.4 (3)
Cu1—N2—C1—C2174.3 (2)C4—C3—C11—O31.3 (4)
N2—C1—C2—C3−0.4 (5)C2—C3—C11—O22.1 (4)
C1—C2—C3—C41.0 (4)C4—C3—C11—O2−177.3 (2)
C1—C2—C3—C11−178.3 (3)C7—C8—C12—O4−5.8 (4)
C2—C3—C4—C5−0.6 (4)C9—C8—C12—O4173.4 (3)
C11—C3—C4—C5178.7 (2)C7—C8—C12—O5174.0 (2)
C1—N2—C5—C40.8 (4)C9—C8—C12—O5−6.9 (4)

Symmetry codes: (i) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O3ii0.932.453.376 (3)172
C4—H4···O3ii0.932.423.346 (3)179
C2—H2···Cl1iii0.932.73.590 (3)160
C1—H1···Cl10.932.673.258 (3)122
O5—H5A···O7iv0.790 (18)1.798 (19)2.582 (3)172 (4)
O2—H2A···O4ii0.77 (4)1.92 (4)2.676 (3)169 (4)
O1—H1WB···O8v0.802 (18)2.10 (2)2.830 (4)152 (4)
O1—H1WA···Cl1v0.819 (18)2.48 (2)3.220 (2)152 (3)

Symmetry codes: (ii) −x+2, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y, −z+1; (v) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RT2020).

References

  • Aitipamula, S., Thallapally, P. K., Thaimattam, R., Jaskólski, M. & Desiraju, G. R. (2002). Org. Lett.4, 921–924. [PubMed]
  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. Engl.37, 1460–1494.
  • Desiraju, G. R. (2002). Acc. Chem. Res.35, 565–573. [PubMed]
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–127.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Han, K.-F., Chen, H.-Y. & Wang, Z.-M. (2007). Acta Cryst. E63, m1695–m1696.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Holliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. Engl.40, 2022–2043. [PubMed]
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. Engl.43, 2334–2375. [PubMed]
  • Kumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des.6, 1903–1909.
  • Liu, Y.-H., Lu, Y.-L., Wu, H.-C., Wang, J.-C. & Lu, K.-L. (2002). Inorg. Chem.41, 2592–2597. [PubMed]
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [PubMed]
  • Ockwig, N. W., Delgado-Friedrichs, O., O’Keeffe, M. & Yaghi, O. M. (2005). Acc. Chem. Res.38, 176–182. [PubMed]
  • Rigaku (2001). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Schareina, T., Schick, C., Abrahams, B. F. & Kempe, R. (2001a). Z. Anorg. Allg. Chem.627, 1711–1713.
  • Schareina, T., Schick, C. & Kempe, R. (2001b). Z. Anorg. Allg. Chem.627, 131–133.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tynan, E., Jensen, P., Kruger, P. E. & Lees, A. C. (2004). Chem. Commun. pp. 776–777. [PubMed]
  • Tynan, E., Jensen, P., Lees, A. C., Moubaraki, B., Murray, K. S. & Kruger, P. E. (2005). CrystEngComm, 7, 90–95.
  • Wu, C.-D. (2006). Inorg. Chem. Commun.9, 1223–1226.
  • Wu, J.-Y., Yeh, T.-T., Wen, Y.-S., Twu, J. & Lu, K.-L. (2006). Cryst. Growth Des.6, 467–473.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography