PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1625.
Published online 2008 November 26. doi:  10.1107/S1600536808039032
PMCID: PMC2959959

Hexaaqua­cadmium(II) 2,2′-(azino­dimethyl­idyne)dibenzene­sulfonate dihydrate

Abstract

In the title compound, [Cd(H2O)6](C14H10O6N2S2)·2H2O, the complete cation and anion are each generated by crystallographic inversion symmetry. In the crystal structure, the components form a three-dimensional network by way of O—H(...)O and O—H(...)N hydrogen bonds.

Related literature

For background to the properties and potential applications of organic–inorganic hybrid materials, see: Hagrman et al. (1998 [triangle]); Ranford et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1625-scheme1.jpg

Experimental

Crystal data

  • [Cd(H2O)6](C14H10O6N2S2)·2H2O
  • M r = 622.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1625-efi1.jpg
  • a = 7.8329 (11) Å
  • b = 7.9824 (12) Å
  • c = 10.1010 (15) Å
  • α = 92.723 (1)°
  • β = 102.076 (2)°
  • γ = 105.924 (2)°
  • V = 590.19 (15) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.17 mm−1
  • T = 298 (2) K
  • 0.45 × 0.40 × 0.28 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.621, T max = 0.735
  • 3081 measured reflections
  • 2041 independent reflections
  • 1929 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023
  • wR(F 2) = 0.061
  • S = 1.06
  • 2041 reflections
  • 152 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039032/hb2858sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039032/hb2858Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science and Technology Foundation of Weifang (2008–19) for a research grant.

supplementary crystallographic information

Comment

The design and synthesis of organic/inorganic hybrid materials have attracted intense attention in recent years owing to their potential practical applications, such as antitumor, antidiabetic, antitubercular activities, magnetism and catalysis [Ranford, et al., 1998; Hagrman, et al., 1998]. As part of our studies in this area, we now report the synthesis and crystal structure of the title compound, (I).

The Cd(II) centre is six-coordinate with six O donors of H2O, and adopts distorted octahedral coordination (Table 1, Fig. 1). In the crystal, the molecules form a three-dimensional network by way of O—H···O and O—H···N hydrogen bonds (Table 2).

Experimental

A solution of 1.0 mmol 2-formyl-benzenesulfonic acid-hydrazine and 1.0 mmol NaOH in 5 ml 95% ethanol was added to a solution of 0.5 mmol Cd(CH3COO)2.4H2O in 5 ml ethanol at room temperature. The mixture was refluxed for 4 h with stirring, then the resulting precipitate was filtered, washed, and dried in vacuo over P4O10 for 48 h. Colourless blocks of (I) were obtained by slowly evaporating from methanol at room temperature.

Refinement

H atom treatment??

Figures

Fig. 1.
The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Symmetry codes: (i) 1–x, 1–y, 1–z; (ii) 1–x, 1–y, –z.

Crystal data

[Cd(H2O)6](C14H10O6N2S2)·2H2OZ = 1
Mr = 622.89F000 = 316
Triclinic, P1Dx = 1.753 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.8329 (11) ÅCell parameters from 2719 reflections
b = 7.9824 (12) Åθ = 2.7–28.3º
c = 10.1010 (15) ŵ = 1.17 mm1
α = 92.723 (1)ºT = 298 (2) K
β = 102.076 (2)ºBlock, colourless
γ = 105.924 (2)º0.45 × 0.40 × 0.28 mm
V = 590.19 (15) Å3

Data collection

Bruker SMART CCD diffractometer2041 independent reflections
Radiation source: fine-focus sealed tube1929 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
T = 298(2) Kθmax = 25.0º
ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −9→9
Tmin = 0.621, Tmax = 0.735k = −5→9
3081 measured reflectionsl = −11→12

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.023  w = 1/[σ2(Fo2) + (0.0313P)2 + 0.2007P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.33 e Å3
2041 reflectionsΔρmin = −0.42 e Å3
152 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.067 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.50000.50000.02922 (13)
N10.5732 (3)0.5473 (3)−0.0282 (2)0.0336 (5)
O11.0298 (2)0.6986 (2)0.35433 (17)0.0384 (4)
O21.1817 (3)1.0036 (3)0.35043 (19)0.0465 (5)
O30.8508 (3)0.8917 (3)0.2790 (2)0.0477 (5)
O40.2044 (2)0.3385 (2)0.45818 (18)0.0406 (4)
H4A0.18470.23420.42290.049*
H4B0.13780.33620.51500.049*
O50.6085 (3)0.3128 (3)0.6297 (2)0.0471 (5)
H5A0.72010.31950.63580.057*
H5B0.54900.20600.62830.057*
O60.5347 (3)0.3561 (3)0.30977 (19)0.0448 (5)
H6A0.52930.24850.31230.054*
H6B0.49080.37300.22890.054*
O70.6167 (3)0.0337 (3)0.3703 (2)0.0468 (5)
H7A0.6908−0.00430.33580.056*
H7B0.65940.04660.45600.056*
S11.02370 (7)0.85670 (8)0.28844 (6)0.02847 (16)
C10.7223 (3)0.5998 (3)0.0615 (2)0.0303 (5)
H10.72340.58060.15170.036*
C20.8948 (3)0.6913 (3)0.0237 (2)0.0265 (5)
C31.0408 (3)0.8087 (3)0.1183 (2)0.0258 (5)
C41.2027 (3)0.8863 (3)0.0822 (3)0.0348 (6)
H41.29840.96500.14510.042*
C51.2224 (4)0.8469 (4)−0.0476 (3)0.0423 (6)
H51.33160.8989−0.07170.051*
C61.0809 (3)0.7311 (4)−0.1414 (3)0.0386 (6)
H61.09480.7044−0.22840.046*
C70.9177 (3)0.6542 (3)−0.1061 (2)0.0337 (5)
H70.82230.5768−0.17010.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.03192 (17)0.02725 (17)0.02920 (17)0.01001 (10)0.00609 (10)0.00611 (10)
N10.0251 (10)0.0408 (12)0.0293 (11)0.0001 (9)0.0060 (8)0.0066 (9)
O10.0449 (10)0.0429 (10)0.0318 (9)0.0163 (8)0.0123 (8)0.0108 (8)
O20.0477 (11)0.0433 (11)0.0375 (10)−0.0004 (9)0.0074 (8)−0.0093 (9)
O30.0429 (10)0.0629 (13)0.0486 (12)0.0291 (10)0.0168 (9)0.0054 (10)
O40.0398 (10)0.0394 (10)0.0389 (10)0.0022 (8)0.0151 (8)0.0000 (8)
O50.0416 (10)0.0394 (11)0.0614 (13)0.0147 (9)0.0069 (9)0.0211 (9)
O60.0639 (12)0.0415 (11)0.0329 (10)0.0200 (10)0.0132 (9)0.0038 (8)
O70.0447 (11)0.0518 (12)0.0501 (12)0.0243 (9)0.0123 (9)−0.0007 (9)
S10.0288 (3)0.0306 (3)0.0257 (3)0.0085 (2)0.0063 (2)0.0008 (2)
C10.0290 (12)0.0316 (13)0.0265 (12)0.0036 (10)0.0048 (10)0.0033 (10)
C20.0251 (11)0.0282 (12)0.0260 (12)0.0080 (9)0.0044 (9)0.0069 (9)
C30.0253 (11)0.0268 (12)0.0258 (12)0.0086 (9)0.0054 (9)0.0055 (9)
C40.0259 (12)0.0389 (14)0.0329 (13)0.0008 (10)0.0040 (10)0.0036 (11)
C50.0325 (13)0.0565 (17)0.0374 (15)0.0052 (12)0.0158 (11)0.0127 (13)
C60.0401 (14)0.0504 (16)0.0287 (13)0.0143 (12)0.0131 (11)0.0086 (12)
C70.0335 (13)0.0382 (14)0.0265 (12)0.0087 (11)0.0029 (10)0.0021 (10)

Geometric parameters (Å, °)

Cd1—O5i2.2555 (18)O6—H6B0.8500
Cd1—O52.2555 (18)O7—H7A0.8499
Cd1—O4i2.2589 (17)O7—H7B0.8500
Cd1—O42.2589 (17)S1—C31.783 (2)
Cd1—O6i2.2947 (18)C1—C21.485 (3)
Cd1—O62.2947 (18)C1—H10.9300
N1—C11.270 (3)C2—C71.390 (3)
N1—N1ii1.431 (4)C2—C31.403 (3)
O1—S11.4621 (19)C3—C41.382 (3)
O2—S11.4523 (19)C4—C51.384 (4)
O3—S11.4414 (18)C4—H40.9300
O4—H4A0.8500C5—C61.377 (4)
O4—H4B0.8500C5—H50.9300
O5—H5A0.8500C6—C71.385 (4)
O5—H5B0.8500C6—H60.9300
O6—H6A0.8499C7—H70.9300
O5i—Cd1—O5180.0O3—S1—O1111.68 (12)
O5i—Cd1—O4i95.45 (7)O2—S1—O1111.24 (12)
O5—Cd1—O4i84.55 (7)O3—S1—C3106.73 (11)
O5i—Cd1—O484.55 (7)O2—S1—C3106.56 (11)
O5—Cd1—O495.45 (7)O1—S1—C3105.47 (10)
O4i—Cd1—O4180.0N1—C1—C2120.7 (2)
O5i—Cd1—O6i89.86 (7)N1—C1—H1119.7
O5—Cd1—O6i90.14 (7)C2—C1—H1119.7
O4i—Cd1—O6i90.19 (7)C7—C2—C3118.4 (2)
O4—Cd1—O6i89.81 (7)C7—C2—C1119.8 (2)
O5i—Cd1—O690.14 (7)C3—C2—C1121.7 (2)
O5—Cd1—O689.86 (7)C4—C3—C2120.5 (2)
O4i—Cd1—O689.81 (7)C4—C3—S1118.63 (17)
O4—Cd1—O690.19 (7)C2—C3—S1120.88 (17)
O6i—Cd1—O6180.0C3—C4—C5120.0 (2)
C1—N1—N1ii111.5 (2)C3—C4—H4120.0
Cd1—O4—H4A113.7C5—C4—H4120.0
Cd1—O4—H4B123.5C6—C5—C4120.3 (2)
H4A—O4—H4B108.3C6—C5—H5119.9
Cd1—O5—H5A116.0C4—C5—H5119.9
Cd1—O5—H5B123.2C5—C6—C7120.0 (2)
H5A—O5—H5B108.7C5—C6—H6120.0
Cd1—O6—H6A116.9C7—C6—H6120.0
Cd1—O6—H6B123.6C6—C7—C2120.8 (2)
H6A—O6—H6B109.5C6—C7—H7119.6
H7A—O7—H7B105.6C2—C7—H7119.6
O3—S1—O2114.51 (12)
N1ii—N1—C1—C2176.2 (2)O3—S1—C3—C2−47.1 (2)
N1—C1—C2—C7−29.2 (4)O2—S1—C3—C2−169.90 (19)
N1—C1—C2—C3154.3 (2)O1—S1—C3—C271.8 (2)
C7—C2—C3—C40.5 (3)C2—C3—C4—C5−0.7 (4)
C1—C2—C3—C4177.1 (2)S1—C3—C4—C5177.7 (2)
C7—C2—C3—S1−177.85 (18)C3—C4—C5—C60.3 (4)
C1—C2—C3—S1−1.2 (3)C4—C5—C6—C70.3 (4)
O3—S1—C3—C4134.5 (2)C5—C6—C7—C2−0.5 (4)
O2—S1—C3—C411.7 (2)C3—C2—C7—C60.1 (4)
O1—S1—C3—C4−106.6 (2)C1—C2—C7—C6−176.6 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O2iii0.851.942.783 (3)171
O4—H4B···O1i0.852.032.872 (2)174
O5—H5A···O1iv0.851.992.831 (3)173
O5—H5B···O7v0.852.002.843 (3)173
O6—H6A···O70.852.082.881 (3)157
O6—H6B···N1ii0.852.152.993 (3)169
O7—H7A···O3vi0.851.852.692 (3)172
O7—H7B···O2iv0.852.213.002 (3)156

Symmetry codes: (iii) x−1, y−1, z; (i) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1; (v) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (vi) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2858).

References

  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hagrman, D., Hammond, R. P. & Haushalter, R. (1998). Chem. Mater.10, 2091–2096.
  • Ranford, J. D., Vittal, J. J. & Wang, Y. M. (1998). Inorg. Chem.37, 1226–1231. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography