PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1563–m1564.
Published online 2008 November 20. doi:  10.1107/S1600536808037331
PMCID: PMC2959956

(Acetato-κO)bis­(2,2′-bipyridyl-κ2 N,N′)copper(II)–ethyl sulfate–methyl sulfate (1/0.5/0.5)

Abstract

In the title complex, [Cu(C2H3O2)(C10H8N2)2](CH3CH2OSO3)0.5(CH3OSO3)0.5, the CuII ion is bis-chelated by two 2,2′-bipyridine lignds and coordinated by an O atom of an acetate ligand in a CuN4O disorted square-pyramidal environment. In the structure, equal amounts of methyl sulfate and ethyl sulfate anions are disordered on the same crystallographic sites. The crystal structure is stabilized by weak inter­molecular C—H(...)O inter­actions.

Related literature

For genernal background to supra­molecular assembly and crystal engineering, see: Aakeröy et al. (1998 [triangle]); Batten & Robson (1998 [triangle]); Yaghi et al. (1998 [triangle]); Kitagawa et al. (2004 [triangle]); Lu et al. (2006 [triangle]). For related strutures, see: Akrivos et al. (1994 [triangle]); Blake et al. (2000 [triangle]); Belokon et al. (2002 [triangle]); Lopez-Sandoval et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1563-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H3O2)(C10H8N2)2](C2H5O4S)0.5(CH3O4S)0.5
  • M r = 553.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1563-efi1.jpg
  • a = 7.1314 (7) Å
  • b = 13.1173 (13) Å
  • c = 13.2783 (14) Å
  • α = 91.875 (1)°
  • β = 104.673 (1)°
  • γ = 101.162 (1)°
  • V = 1174.5 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.07 mm−1
  • T = 291 (2) K
  • 0.36 × 0.27 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.703, T max = 0.800
  • 8803 measured reflections
  • 4347 independent reflections
  • 3848 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.076
  • S = 1.04
  • 4347 reflections
  • 331 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037331/lh2732sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037331/lh2732Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a key grant from the Qiannan Normal College for Nationalities Foundation of Guizhou Province (grant No. 2007z15) and the Qinzhou University Foundation of Guangxi Zhuang Autonomous Region of the People’s Republic of China (grant No. 2008XJKY-10B).

supplementary crystallographic information

Comment

The field of supramolecular assembly and crystal engineering in which transition metal cationic centres are linked through anions via hydrogen-bonded supramolecular synthons is receiving growing attention (Yaghi et al., 1998; Kitagawa et al., 2004; Lu et al., 2006). This work is driven by the elegant multi-dimensional architectures which can be fabricated by bringing together the rapidly maturing fields of hydrogen-bonded crystal engineering inorganic co-ordination polymer construction (Aakeröy et al., 1998; Batten et al., 1998). In the synthethis of the title compound, methylsulfate and ethylsulfate are produced in two two stages (Blake et al., 2000).

Herein, we report the synthesis and crystal structure of the title compound, (I), containing a discrete copper(II) complex cation and a disordered mixture of equal amounts of ethyl sulfate and methyl sulfate anions. The molecular structure of (I) is shown in Fig. 1. The CuII ion is chelated by two 2,2'-bipyridine ligands and is bonded to one oxygen of acetate moiety ion forming a CuN4O distorted square-pyramidal coordination environment. In the crystal structure weak C-H···O hydrogen bonds link complex cations and sulfonate anions to form a three-dimensional network (Fig.2 and Table 2). Some crystal structures which are closely related to the title compound have already been studied (Blake et al., 2000; Lopez-Sandoval et al., 2004; Belokon et al., 2002; Akrivos et al., 1994).

Experimental

Reagents and solvents used were of commercially available quality. To an aqueous solution (10 ml) of aminomethanesulfonic acid (0.11 g,1 mmol) and NaOH (0.04 g,1.0 mmol), Cu(CH3COO)2.H2O (0.20 g, 1.0 mmol) in methanol (10 ml) was added slowly. The solution was stirred for 30 min and then 2,2'-bipyridine (0.156 g, 1 mmol) in ethanol (10 ml) was added slowly. The mixture was refluxed overnight to give a green solution. After filtration, the solution was allowed to stand in air and after several days, green block-shaped crystal were collected in 20% yield. Analysis found: C 50.72, 30, H 4.22, N 10.16, S 5.72%; calculated for C47H46Cu2N8O12S2: C 50.90, H 4.16, N 10.12, S 5.78%.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. From an initial solution irregular bond lengths, large displacement parameters in the C atoms of the anion and the presence of large peaks in difference Fourier maps which were close to the terminal (C2H5–) group, led us to suspect the presence of the disorder. The initially refined ratio of the site-occupany factors for the disorder components were eventually fixed at 0.5/0.5.

Figures

Fig. 1.
The molecular structure with displacement ellipsoids at the 30% probability level. The disorder is shown as open bonds.
Fig. 2.
Part of the crystal structure showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.

Crystal data

[Cu(C2H3O2)(C10H8N2)2](C2H5O4S)0.5(CH3O4S)0.5Z = 2
Mr = 553.06F000 = 570
Triclinic, P1Dx = 1.564 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.1314 (7) ÅCell parameters from 4397 reflections
b = 13.1173 (13) Åθ = 2.3–28.1º
c = 13.2783 (14) ŵ = 1.07 mm1
α = 91.875 (1)ºT = 291 (2) K
β = 104.673 (1)ºBlock, green
γ = 101.162 (1)º0.36 × 0.27 × 0.22 mm
V = 1174.5 (2) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4347 independent reflections
Radiation source: fine-focus sealed tube3848 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.015
T = 291(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.703, Tmax = 0.800k = −15→15
8803 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.076  w = 1/[σ2(Fo2) + (0.0354P)2 + 0.5539P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4347 reflectionsΔρmax = 0.55 e Å3
331 parametersΔρmin = −0.25 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.69835 (4)0.608241 (18)0.760447 (18)0.03168 (9)
O10.8543 (2)0.52120 (12)0.84602 (12)0.0433 (4)
O20.9954 (3)0.51379 (14)0.71558 (14)0.0550 (4)
N10.5337 (2)0.67731 (13)0.64598 (13)0.0317 (4)
N20.4968 (2)0.48175 (13)0.68357 (13)0.0323 (4)
N30.6247 (3)0.68159 (15)0.89221 (14)0.0383 (4)
N40.9261 (2)0.73567 (13)0.80779 (13)0.0326 (4)
C10.4895 (3)0.38259 (17)0.70852 (18)0.0415 (5)
H1A0.57720.36990.76940.050*
C20.3570 (3)0.29897 (18)0.6473 (2)0.0461 (6)
H2A0.35520.23130.66660.055*
C30.2279 (3)0.31788 (17)0.55725 (19)0.0430 (5)
H3A0.13710.26290.51490.052*
C40.2337 (3)0.41910 (16)0.52997 (17)0.0365 (5)
H4A0.14800.43290.46890.044*
C50.3697 (3)0.49981 (15)0.59519 (15)0.0289 (4)
C60.3895 (3)0.61088 (15)0.57390 (15)0.0284 (4)
C70.2728 (3)0.64571 (17)0.48789 (16)0.0362 (5)
H7A0.17540.59880.43890.043*
C80.3031 (3)0.75132 (18)0.47579 (18)0.0434 (5)
H8A0.22780.77610.41760.052*
C90.4454 (4)0.81974 (18)0.55037 (19)0.0469 (6)
H9A0.46510.89120.54430.056*
C100.5578 (3)0.78016 (16)0.63401 (18)0.0403 (5)
H10A0.65430.82630.68430.048*
C110.9728 (3)0.48732 (17)0.80077 (19)0.0424 (5)
C121.0787 (4)0.4086 (2)0.8584 (3)0.0645 (8)
H12A1.19630.40710.83620.097*
H12B0.99290.34080.84340.097*
H12C1.11440.42800.93220.097*
C131.0729 (3)0.75999 (18)0.76051 (18)0.0424 (5)
H13A1.06690.71950.70050.051*
C141.2314 (4)0.84204 (19)0.7971 (2)0.0516 (6)
H14A1.32830.85840.76130.062*
C151.2432 (4)0.89909 (19)0.8875 (2)0.0531 (7)
H15A1.35040.95410.91470.064*
C161.0960 (4)0.87503 (18)0.93812 (19)0.0467 (6)
H16A1.10370.91320.99990.056*
C170.9355 (3)0.79297 (16)0.89594 (15)0.0338 (5)
C180.7654 (3)0.76315 (16)0.94229 (16)0.0358 (5)
C190.7519 (4)0.8162 (2)1.03148 (18)0.0531 (6)
H19A0.85190.87221.06540.064*
C200.5900 (5)0.7851 (3)1.0690 (2)0.0658 (8)
H20A0.57840.82021.12840.079*
C210.4449 (5)0.7017 (3)1.0183 (2)0.0660 (8)
H21A0.33400.67931.04280.079*
C220.4667 (4)0.6515 (2)0.9297 (2)0.0532 (6)
H22A0.36840.59510.89510.064*
S10.65876 (9)0.06973 (4)0.75424 (4)0.04017 (14)
O30.7495 (3)0.17515 (13)0.79359 (16)0.0663 (5)
O40.4498 (3)0.05525 (16)0.70285 (18)0.0724 (6)
O50.7039 (3)−0.00602 (14)0.82714 (14)0.0622 (5)
O60.7439 (3)0.04364 (14)0.65787 (13)0.0530 (4)
C23A0.9552 (16)0.054 (5)0.690 (4)0.066 (4)0.50
H23A1.00100.03710.63040.099*0.50
H23B0.98950.00820.74260.099*0.50
H23C1.01650.12500.71670.099*0.50
C23B0.9520 (17)0.047 (5)0.674 (4)0.066 (4)0.50
H23D0.99710.00230.72750.079*0.50
H23E1.02740.11760.69510.079*0.50
C24B0.9788 (9)0.0102 (6)0.5741 (5)0.0774 (19)0.50
H24A1.11740.01510.58040.116*0.50
H24B0.92680.05260.52070.116*0.50
H24C0.9097−0.06100.55580.116*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03401 (15)0.02954 (14)0.02825 (14)0.00588 (10)0.00340 (10)−0.00086 (10)
O10.0449 (9)0.0416 (9)0.0391 (9)0.0128 (7)0.0004 (7)0.0030 (7)
O20.0610 (11)0.0528 (11)0.0479 (10)0.0116 (9)0.0098 (9)−0.0044 (8)
N10.0361 (9)0.0272 (9)0.0297 (9)0.0068 (7)0.0056 (7)−0.0029 (7)
N20.0332 (9)0.0299 (9)0.0330 (9)0.0052 (7)0.0081 (7)0.0034 (7)
N30.0376 (10)0.0447 (11)0.0345 (10)0.0115 (8)0.0108 (8)0.0041 (8)
N40.0324 (9)0.0318 (9)0.0307 (9)0.0053 (7)0.0049 (7)−0.0002 (7)
C10.0423 (12)0.0370 (12)0.0442 (13)0.0056 (10)0.0103 (10)0.0123 (10)
C20.0457 (13)0.0294 (12)0.0638 (16)0.0025 (10)0.0192 (12)0.0098 (11)
C30.0388 (12)0.0316 (12)0.0538 (14)−0.0026 (9)0.0121 (11)−0.0040 (10)
C40.0331 (11)0.0356 (11)0.0376 (12)0.0030 (9)0.0074 (9)−0.0022 (9)
C50.0261 (10)0.0302 (10)0.0311 (10)0.0043 (8)0.0104 (8)0.0005 (8)
C60.0262 (10)0.0290 (10)0.0306 (10)0.0052 (8)0.0093 (8)−0.0011 (8)
C70.0314 (11)0.0385 (12)0.0352 (11)0.0056 (9)0.0041 (9)0.0013 (9)
C80.0429 (13)0.0426 (13)0.0423 (13)0.0132 (10)0.0030 (10)0.0099 (10)
C90.0539 (14)0.0297 (12)0.0549 (15)0.0116 (10)0.0082 (12)0.0057 (10)
C100.0444 (12)0.0278 (11)0.0433 (13)0.0065 (9)0.0037 (10)−0.0039 (9)
C110.0365 (12)0.0317 (11)0.0480 (14)0.0029 (9)−0.0045 (10)−0.0050 (10)
C120.0500 (15)0.0452 (15)0.095 (2)0.0167 (12)0.0066 (15)0.0143 (15)
C130.0427 (13)0.0403 (12)0.0444 (13)0.0061 (10)0.0141 (10)0.0037 (10)
C140.0409 (13)0.0444 (14)0.0699 (17)0.0048 (11)0.0175 (12)0.0134 (12)
C150.0389 (13)0.0372 (13)0.0699 (18)−0.0023 (10)−0.0019 (12)0.0053 (12)
C160.0533 (14)0.0340 (12)0.0420 (13)0.0071 (10)−0.0044 (11)−0.0055 (10)
C170.0393 (11)0.0297 (11)0.0295 (10)0.0118 (9)0.0004 (9)0.0029 (8)
C180.0480 (13)0.0343 (11)0.0267 (10)0.0174 (10)0.0059 (9)0.0039 (8)
C190.0791 (18)0.0499 (15)0.0360 (13)0.0268 (13)0.0160 (13)−0.0002 (11)
C200.092 (2)0.081 (2)0.0448 (15)0.0477 (19)0.0317 (16)0.0100 (14)
C210.0636 (18)0.101 (2)0.0576 (17)0.0440 (18)0.0362 (15)0.0336 (17)
C220.0437 (14)0.0680 (18)0.0526 (15)0.0148 (12)0.0176 (12)0.0150 (13)
S10.0482 (3)0.0304 (3)0.0421 (3)0.0057 (2)0.0144 (3)0.0001 (2)
O30.0808 (13)0.0359 (10)0.0769 (13)−0.0036 (9)0.0255 (11)−0.0142 (9)
O40.0535 (11)0.0638 (13)0.0943 (16)0.0101 (10)0.0111 (11)0.0104 (11)
O50.0844 (14)0.0543 (11)0.0475 (10)0.0122 (10)0.0173 (9)0.0154 (9)
O60.0659 (11)0.0516 (10)0.0441 (9)0.0147 (9)0.0175 (8)0.0019 (8)
C23A0.0588 (18)0.083 (7)0.068 (10)0.029 (2)0.0290 (18)0.013 (7)
C23B0.0588 (18)0.083 (7)0.068 (10)0.029 (2)0.0290 (18)0.013 (7)
C24B0.064 (4)0.094 (5)0.080 (4)0.021 (3)0.028 (3)−0.013 (4)

Geometric parameters (Å, °)

Cu1—O11.9411 (15)C12—H12B0.9600
Cu1—N22.0207 (17)C12—H12C0.9600
Cu1—N12.0266 (17)C13—C141.374 (3)
Cu1—N42.0471 (17)C13—H13A0.9300
Cu1—N32.1940 (18)C14—C151.369 (4)
O1—C111.287 (3)C14—H14A0.9300
O2—C111.234 (3)C15—C161.377 (4)
N1—C101.346 (3)C15—H15A0.9300
N1—C61.354 (2)C16—C171.393 (3)
N2—C11.347 (3)C16—H16A0.9300
N2—C51.348 (3)C17—C181.488 (3)
N3—C181.339 (3)C18—C191.388 (3)
N3—C221.341 (3)C19—C201.367 (4)
N4—C131.345 (3)C19—H19A0.9300
N4—C171.350 (3)C20—C211.372 (4)
C1—C21.381 (3)C20—H20A0.9300
C1—H1A0.9300C21—C221.386 (4)
C2—C31.374 (3)C21—H21A0.9300
C2—H2A0.9300C22—H22A0.9300
C3—C41.383 (3)S1—O31.4279 (18)
C3—H3A0.9300S1—O51.4341 (18)
C4—C51.389 (3)S1—O41.445 (2)
C4—H4A0.9300S1—O61.6026 (17)
C5—C61.480 (3)O6—C23A1.436 (7)
C6—C71.380 (3)O6—C23B1.438 (7)
C7—C81.381 (3)C23A—H23A0.9600
C7—H7A0.9300C23A—H23B0.9600
C8—C91.377 (3)C23A—H23C0.9600
C8—H8A0.9300C23B—C24B1.46 (5)
C9—C101.376 (3)C23B—H23D0.9700
C9—H9A0.9300C23B—H23E0.9700
C10—H10A0.9300C24B—H24A0.9600
C11—C121.511 (3)C24B—H24B0.9600
C12—H12A0.9600C24B—H24C0.9600
O1—Cu1—N291.45 (7)H12A—C12—H12B109.5
O1—Cu1—N1167.87 (6)C11—C12—H12C109.5
N2—Cu1—N180.14 (7)H12A—C12—H12C109.5
O1—Cu1—N491.03 (7)H12B—C12—H12C109.5
N2—Cu1—N4166.61 (7)N4—C13—C14122.8 (2)
N1—Cu1—N495.20 (7)N4—C13—H13A118.6
O1—Cu1—N394.44 (7)C14—C13—H13A118.6
N2—Cu1—N3115.38 (7)C15—C14—C13118.3 (2)
N1—Cu1—N397.05 (7)C15—C14—H14A120.8
N4—Cu1—N377.52 (7)C13—C14—H14A120.8
C11—O1—Cu1112.76 (15)C14—C15—C16120.0 (2)
C10—N1—C6118.32 (18)C14—C15—H15A120.0
C10—N1—Cu1126.67 (14)C16—C15—H15A120.0
C6—N1—Cu1114.99 (13)C15—C16—C17119.3 (2)
C1—N2—C5118.53 (18)C15—C16—H16A120.3
C1—N2—Cu1125.94 (15)C17—C16—H16A120.3
C5—N2—Cu1115.32 (13)N4—C17—C16120.6 (2)
C18—N3—C22118.5 (2)N4—C17—C18115.85 (18)
C18—N3—Cu1113.03 (14)C16—C17—C18123.6 (2)
C22—N3—Cu1128.37 (17)N3—C18—C19121.8 (2)
C13—N4—C17118.92 (18)N3—C18—C17115.71 (18)
C13—N4—Cu1123.50 (14)C19—C18—C17122.5 (2)
C17—N4—Cu1117.38 (14)C20—C19—C18119.3 (3)
N2—C1—C2122.6 (2)C20—C19—H19A120.3
N2—C1—H1A118.7C18—C19—H19A120.3
C2—C1—H1A118.7C19—C20—C21119.4 (3)
C3—C2—C1118.6 (2)C19—C20—H20A120.3
C3—C2—H2A120.7C21—C20—H20A120.3
C1—C2—H2A120.7C20—C21—C22118.7 (3)
C2—C3—C4119.7 (2)C20—C21—H21A120.6
C2—C3—H3A120.2C22—C21—H21A120.6
C4—C3—H3A120.2N3—C22—C21122.3 (3)
C3—C4—C5118.9 (2)N3—C22—H22A118.9
C3—C4—H4A120.5C21—C22—H22A118.9
C5—C4—H4A120.5O3—S1—O5114.52 (12)
N2—C5—C4121.65 (18)O3—S1—O4113.33 (13)
N2—C5—C6114.68 (17)O5—S1—O4113.34 (12)
C4—C5—C6123.66 (18)O3—S1—O6107.18 (11)
N1—C6—C7121.76 (18)O5—S1—O6106.19 (11)
N1—C6—C5114.55 (17)O4—S1—O6100.85 (12)
C7—C6—C5123.69 (18)C23A—O6—S1111.6 (19)
C6—C7—C8119.0 (2)C23B—O6—S1120.4 (18)
C6—C7—H7A120.5O6—C23A—H23A109.5
C8—C7—H7A120.5O6—C23A—H23B109.5
C9—C8—C7119.6 (2)O6—C23A—H23C109.5
C9—C8—H8A120.2O6—C23B—C24B107 (2)
C7—C8—H8A120.2O6—C23B—H23D110.3
C10—C9—C8118.6 (2)C24B—C23B—H23D110.3
C10—C9—H9A120.7O6—C23B—H23E110.3
C8—C9—H9A120.7C24B—C23B—H23E110.3
N1—C10—C9122.6 (2)H23D—C23B—H23E108.6
N1—C10—H10A118.7C23B—C24B—H24A109.5
C9—C10—H10A118.7C23B—C24B—H24B109.5
O2—C11—O1123.5 (2)H24A—C24B—H24B109.5
O2—C11—C12121.8 (2)C23B—C24B—H24C109.5
O1—C11—C12114.7 (2)H24A—C24B—H24C109.5
C11—C12—H12A109.5H24B—C24B—H24C109.5
C11—C12—H12B109.5
N2—Cu1—O1—C1183.73 (15)C10—N1—C6—C5−178.14 (18)
N1—Cu1—O1—C1137.9 (4)Cu1—N1—C6—C53.6 (2)
N4—Cu1—O1—C11−83.11 (15)N2—C5—C6—N10.6 (2)
N3—Cu1—O1—C11−160.68 (15)C4—C5—C6—N1−178.70 (18)
O1—Cu1—N1—C10−136.1 (3)N2—C5—C6—C7−179.65 (18)
N2—Cu1—N1—C10177.24 (19)C4—C5—C6—C71.0 (3)
N4—Cu1—N1—C10−15.43 (18)N1—C6—C7—C8−0.6 (3)
N3—Cu1—N1—C1062.60 (18)C5—C6—C7—C8179.67 (19)
O1—Cu1—N1—C642.0 (4)C6—C7—C8—C9−1.4 (3)
N2—Cu1—N1—C6−4.66 (13)C7—C8—C9—C101.8 (4)
N4—Cu1—N1—C6162.67 (14)C6—N1—C10—C9−1.7 (3)
N3—Cu1—N1—C6−119.29 (14)Cu1—N1—C10—C9176.35 (17)
O1—Cu1—N2—C18.46 (18)C8—C9—C10—N1−0.2 (4)
N1—Cu1—N2—C1179.67 (18)Cu1—O1—C11—O25.2 (3)
N4—Cu1—N2—C1109.1 (3)Cu1—O1—C11—C12−172.77 (16)
N3—Cu1—N2—C1−87.15 (18)C17—N4—C13—C14−1.1 (3)
O1—Cu1—N2—C5−166.17 (14)Cu1—N4—C13—C14−175.82 (17)
N1—Cu1—N2—C55.04 (14)N4—C13—C14—C152.3 (4)
N4—Cu1—N2—C5−65.5 (3)C13—C14—C15—C16−1.4 (4)
N3—Cu1—N2—C598.22 (14)C14—C15—C16—C17−0.5 (4)
O1—Cu1—N3—C1884.49 (15)C13—N4—C17—C16−0.9 (3)
N2—Cu1—N3—C18178.22 (13)Cu1—N4—C17—C16174.12 (15)
N1—Cu1—N3—C18−99.38 (14)C13—N4—C17—C18178.51 (18)
N4—Cu1—N3—C18−5.59 (14)Cu1—N4—C17—C18−6.4 (2)
O1—Cu1—N3—C22−91.6 (2)C15—C16—C17—N41.7 (3)
N2—Cu1—N3—C222.1 (2)C15—C16—C17—C18−177.7 (2)
N1—Cu1—N3—C2284.5 (2)C22—N3—C18—C190.4 (3)
N4—Cu1—N3—C22178.3 (2)Cu1—N3—C18—C19−176.14 (17)
O1—Cu1—N4—C1386.96 (17)C22—N3—C18—C17−179.43 (19)
N2—Cu1—N4—C13−13.7 (4)Cu1—N3—C18—C174.0 (2)
N1—Cu1—N4—C13−82.63 (17)N4—C17—C18—N31.3 (3)
N3—Cu1—N4—C13−178.72 (18)C16—C17—C18—N3−179.33 (19)
O1—Cu1—N4—C17−87.84 (15)N4—C17—C18—C19−178.58 (19)
N2—Cu1—N4—C17171.5 (2)C16—C17—C18—C190.8 (3)
N1—Cu1—N4—C17102.57 (15)N3—C18—C19—C20−0.6 (4)
N3—Cu1—N4—C176.48 (14)C17—C18—C19—C20179.3 (2)
C5—N2—C1—C2−0.1 (3)C18—C19—C20—C210.5 (4)
Cu1—N2—C1—C2−174.60 (17)C19—C20—C21—C22−0.3 (4)
N2—C1—C2—C30.2 (4)C18—N3—C22—C21−0.2 (4)
C1—C2—C3—C40.2 (3)Cu1—N3—C22—C21175.77 (18)
C2—C3—C4—C5−0.6 (3)C20—C21—C22—N30.1 (4)
C1—N2—C5—C4−0.3 (3)O3—S1—O6—C23A60 (3)
Cu1—N2—C5—C4174.78 (15)O5—S1—O6—C23A−62 (3)
C1—N2—C5—C6−179.62 (17)O4—S1—O6—C23A179 (3)
Cu1—N2—C5—C6−4.6 (2)O3—S1—O6—C23B62 (3)
C3—C4—C5—N20.6 (3)O5—S1—O6—C23B−61 (3)
C3—C4—C5—C6179.90 (19)O4—S1—O6—C23B−179 (3)
C10—N1—C6—C72.1 (3)S1—O6—C23B—C24B175 (2)
Cu1—N1—C6—C7−176.14 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16A···O5i0.932.493.339 (3)151
C12—H12B···O30.962.463.414 (3)174
C8—H8A···O6ii0.932.593.295 (3)133
C7—H7A···O2ii0.932.393.286 (3)162
C4—H4A···O2ii0.932.583.482 (3)163
C2—H2A···O40.932.563.454 (3)162
C1—H1A···O10.932.492.992 (3)114

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2732).

References

  • Aakeröy, C. B. & Beatty, A. M. (1998). Chem. Commun. pp. 1067–1068.
  • Akrivos, P. D., Hadjikakou, S. K., Karagiannidis, P., Luic, M. & Kojic-Prodic, B. (1994). J. Coord. Chem.31, 273–282.
  • Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed.37, 1460–1494.
  • Belokon, Y. N., Carta, P., Gutnov, A. V., Maleev, V., Moskalenko, M. A., Yashkina, L. V., Ikonnikov, N. S., Voskoboev, N. V., Khrustalev, V. N. & North, M. (2002). Helv. Chim. Acta, 85, 3301–3312.
  • Blake, A. J., Hubberstey, P., Suksangpanya, U. & Wilson, C. L. (2000). J. Chem. Soc. Dalton Trans. pp. 3873–3880.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2338. [PubMed]
  • Lopez-Sandoval, H., Richaud, A., Contreras, R., Leigh, G. J., Hitchcock, P. B., Flores-Parra, A., Galvez-Ruiz, J. C., Cruz, A., Noth, H. & Barba-Behrens, N. (2004). Polyhedron, 23, 1837–1843.
  • Lu, W.-J., Zhu, Y.-M. & Zhong, K.-L. (2006). Acta Cryst. C62, m448–m450. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–554.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography