PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2276.
Published online 2008 November 8. doi:  10.1107/S1600536808035198
PMCID: PMC2959953

2,5-Dimethoxy­benzaldehyde thio­semicarbazone

Abstract

In the title mol­ecule, C10H13N3O2S, the dihedral angle between benzene and –N—C(=S)—N—N=C– planes is 9.20 (6)°. The two meth­oxy groups are coplanar with the benzene ring [C—O—C—C torsion angles of −2.31 (18) and −6.45 (17)°]. In the crystal structure, mol­ecules are linked by inter­molecular N—H(...)S, N—H(...)O and C—H(...)O hydrogen bonds, forming a three-dimensional network.

Related literature

For the biomedical properties of thio­semicarbazones, see: Beraldo & Gambino (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2276-scheme1.jpg

Experimental

Crystal data

  • C10H13N3O2S
  • M r = 239.29
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2276-efi1.jpg
  • a = 11.0713 (1) Å
  • b = 13.0603 (2) Å
  • c = 15.7808 (2) Å
  • V = 2281.82 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.27 mm−1
  • T = 100.0 (1) K
  • 0.34 × 0.28 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.912, T max = 0.943
  • 18486 measured reflections
  • 3486 independent reflections
  • 2834 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.097
  • S = 1.06
  • 3486 reflections
  • 157 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035198/ci2701sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035198/ci2701Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

supplementary crystallographic information

Comment

Thiosemicarbazones are of great interest because of their profound biomedical properties (Beraldo et al., 2004). Flexibility and bioactivity of these compounds arise due to the presence of amino group (–N═CH–) in addition to thioamino moieties present in the skeleton of the molecule. We have synthesized the title compound and its crystal structure is reported here.

The bond lengths in the title molecule (Fig.1) are found to have normal values (Allen et al., 1987). The two methoxy groups are coplanar with the benzene ring, with C9—O1—C1—C2 and C10—O2—C4—C3 torsion angles of -2.31 (18) and -6.45 (17)°, respectively. The dihedral angle between the C1—C6 and S1/N1—N3/C7/C8 planes is 9.20 (6)°.

In the crystal packing, the molecules are linked together by intermolecular N—H···S, N—H···O and C—H···O hydrogen bonds (Table 1) to form a three-dimensional network (Fig.2).

Experimental

The title compound was synthesized by refluxing 2,5-dimethoxy benzaldehyde (0.075 mol) and thiosemicarbazone (0.05 mol) in methanol (100 ml) for 2 h. The solution was then allowed to cool, poured into a beaker containing water and stirred for 30 min. The product was separated by filtration and the crude sample obtained was recrystallized twice from hot methanol.

Refinement

N-bound H atoms were located in a difference map and were refined with an N—H distance restraint of 0.86 (1) Å. C-bound H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined using a riding model with Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C10H13N3O2SF000 = 1008
Mr = 239.29Dx = 1.393 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4233 reflections
a = 11.0713 (1) Åθ = 2.6–30.0º
b = 13.0603 (2) ŵ = 0.27 mm1
c = 15.7808 (2) ÅT = 100.0 (1) K
V = 2281.82 (5) Å3Block, colourless
Z = 80.34 × 0.28 × 0.22 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3486 independent reflections
Radiation source: fine-focus sealed tube2834 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 100.0(1) Kθmax = 30.5º
[var phi] and ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −15→11
Tmin = 0.912, Tmax = 0.943k = −14→18
18486 measured reflectionsl = −22→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097  w = 1/[σ2(Fo2) + (0.0435P)2 + 0.8407P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3486 reflectionsΔρmax = 0.40 e Å3
157 parametersΔρmin = −0.27 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.01083 (3)1.16558 (3)0.45083 (2)0.01697 (9)
O10.35907 (8)0.80559 (7)0.68704 (6)0.0191 (2)
O20.72695 (8)1.07776 (7)0.61508 (6)0.0165 (2)
N10.28066 (10)1.06262 (9)0.56220 (6)0.0150 (2)
N20.16335 (10)1.07175 (9)0.53426 (7)0.0157 (2)
N30.21269 (11)1.23005 (9)0.48405 (7)0.0178 (2)
C10.45590 (12)0.86889 (10)0.67348 (7)0.0150 (2)
C20.57116 (12)0.85165 (10)0.70424 (8)0.0174 (3)
H2A0.58680.79390.73700.021*
C30.66395 (12)0.92047 (10)0.68638 (8)0.0175 (3)
H3A0.74140.90850.70700.021*
C40.64053 (11)1.00689 (10)0.63780 (7)0.0144 (2)
C50.52450 (12)1.02595 (10)0.60844 (7)0.0145 (2)
H5A0.50911.08460.57680.017*
C60.43114 (11)0.95785 (10)0.62609 (7)0.0138 (2)
C70.30819 (12)0.97659 (10)0.59612 (8)0.0153 (2)
H7A0.24970.92590.60170.018*
C80.13017 (11)1.15736 (10)0.49192 (7)0.0142 (2)
C90.37938 (13)0.71375 (11)0.73357 (9)0.0231 (3)
H9A0.30490.67660.73870.035*
H9B0.40920.73040.78900.035*
H9C0.43770.67240.70440.035*
C100.84490 (12)1.06643 (11)0.65093 (8)0.0184 (3)
H10A0.89651.12000.63030.028*
H10B0.87771.00120.63500.028*
H10C0.83971.07050.71160.028*
H1N20.1156 (16)1.0222 (14)0.5376 (11)0.024 (4)*
H2N30.2833 (10)1.2200 (13)0.5055 (10)0.025 (4)*
H1N30.1967 (18)1.2835 (10)0.4545 (10)0.036 (5)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01117 (16)0.01533 (17)0.02441 (16)0.00118 (11)−0.00228 (12)0.00302 (11)
O10.0150 (5)0.0161 (5)0.0261 (5)0.0003 (4)0.0023 (4)0.0075 (4)
O20.0115 (4)0.0155 (5)0.0224 (4)−0.0017 (3)−0.0022 (3)0.0021 (3)
N10.0109 (5)0.0158 (5)0.0184 (5)0.0003 (4)−0.0023 (4)0.0008 (4)
N20.0107 (5)0.0134 (5)0.0231 (5)−0.0015 (4)−0.0029 (4)0.0036 (4)
N30.0139 (5)0.0143 (5)0.0251 (5)−0.0012 (4)−0.0037 (4)0.0035 (4)
C10.0154 (6)0.0134 (6)0.0161 (5)0.0008 (5)0.0028 (5)0.0010 (4)
C20.0187 (7)0.0140 (6)0.0196 (5)0.0031 (5)−0.0001 (5)0.0035 (4)
C30.0143 (6)0.0176 (6)0.0205 (6)0.0035 (5)−0.0029 (5)0.0008 (5)
C40.0129 (6)0.0141 (6)0.0161 (5)0.0002 (5)0.0007 (4)−0.0015 (4)
C50.0152 (6)0.0131 (6)0.0154 (5)0.0010 (5)−0.0009 (4)0.0013 (4)
C60.0125 (6)0.0137 (6)0.0151 (5)0.0016 (5)0.0000 (4)0.0004 (4)
C70.0130 (6)0.0152 (6)0.0176 (5)−0.0009 (5)0.0001 (4)0.0013 (4)
C80.0132 (6)0.0137 (6)0.0156 (5)0.0010 (4)0.0009 (4)−0.0008 (4)
C90.0223 (7)0.0168 (7)0.0301 (7)0.0002 (5)0.0039 (6)0.0085 (5)
C100.0127 (6)0.0206 (7)0.0218 (6)0.0005 (5)−0.0025 (5)−0.0017 (5)

Geometric parameters (Å, °)

S1—C81.6938 (13)C2—H2A0.93
O1—C11.3706 (16)C3—C41.3888 (18)
O1—C91.4242 (16)C3—H3A0.93
O2—C41.3788 (15)C4—C51.3881 (17)
O2—C101.4308 (15)C5—C61.3917 (18)
N1—C71.2813 (16)C5—H5A0.93
N1—N21.3768 (15)C6—C71.4617 (18)
N2—C81.3533 (16)C7—H7A0.93
N2—H1N20.838 (18)C9—H9A0.96
N3—C81.3235 (17)C9—H9B0.96
N3—H2N30.861 (9)C9—H9C0.96
N3—H1N30.857 (9)C10—H10A0.96
C1—C21.3837 (19)C10—H10B0.96
C1—C61.4087 (17)C10—H10C0.96
C2—C31.3938 (19)
C1—O1—C9117.71 (10)C6—C5—H5A119.8
C4—O2—C10117.46 (10)C5—C6—C1119.26 (12)
C7—N1—N2115.73 (11)C5—C6—C7121.33 (11)
C8—N2—N1119.06 (11)C1—C6—C7119.41 (12)
C8—N2—H1N2119.9 (12)N1—C7—C6120.23 (12)
N1—N2—H1N2120.5 (12)N1—C7—H7A119.9
C8—N3—H2N3118.7 (11)C6—C7—H7A119.9
C8—N3—H1N3119.5 (14)N3—C8—N2116.85 (12)
H2N3—N3—H1N3121.6 (17)N3—C8—S1123.70 (10)
O1—C1—C2124.64 (11)N2—C8—S1119.44 (10)
O1—C1—C6115.35 (11)O1—C9—H9A109.5
C2—C1—C6120.00 (12)O1—C9—H9B109.5
C1—C2—C3120.25 (12)H9A—C9—H9B109.5
C1—C2—H2A119.9O1—C9—H9C109.5
C3—C2—H2A119.9H9A—C9—H9C109.5
C4—C3—C2119.87 (12)H9B—C9—H9C109.5
C4—C3—H3A120.1O2—C10—H10A109.5
C2—C3—H3A120.1O2—C10—H10B109.5
O2—C4—C5115.78 (11)H10A—C10—H10B109.5
O2—C4—C3124.03 (11)O2—C10—H10C109.5
C5—C4—C3120.19 (12)H10A—C10—H10C109.5
C4—C5—C6120.39 (12)H10B—C10—H10C109.5
C4—C5—H5A119.8
C7—N1—N2—C8−174.96 (11)C4—C5—C6—C1−0.54 (18)
C9—O1—C1—C2−2.31 (18)C4—C5—C6—C7179.74 (11)
C9—O1—C1—C6179.11 (11)O1—C1—C6—C5−179.27 (11)
O1—C1—C2—C3179.55 (12)C2—C1—C6—C52.07 (18)
C6—C1—C2—C3−1.93 (19)O1—C1—C6—C70.45 (17)
C1—C2—C3—C40.25 (19)C2—C1—C6—C7−178.20 (11)
C10—O2—C4—C5173.96 (11)N2—N1—C7—C6178.52 (10)
C10—O2—C4—C3−6.45 (17)C5—C6—C7—N1−8.95 (18)
C2—C3—C4—O2−178.28 (11)C1—C6—C7—N1171.33 (11)
C2—C3—C4—C51.30 (19)N1—N2—C8—N3−3.50 (17)
O2—C4—C5—C6178.47 (11)N1—N2—C8—S1175.42 (9)
C3—C4—C5—C6−1.14 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.84 (4)2.718 (18)3.5375 (12)166 (2)
N3—H2N3···S1ii0.86 (1)2.811 (13)3.5047 (12)139 (1)
N3—H1N3···O2iii0.86 (1)2.145 (11)2.9617 (15)159 (2)
C3—H3A···O1iv0.932.513.3027 (16)143

Symmetry codes: (i) −x, −y+2, −z+1; (ii) x+1/2, −y+5/2, −z+1; (iii) x−1/2, −y+5/2, −z+1; (iv) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2701).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Beraldo, H. & Gambino, D. (2004). Mini-Rev. Med. Chem.4, 31–39. [PubMed]
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography