PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2345–o2346.
Published online 2008 November 13. doi:  10.1107/S1600536808037215
PMCID: PMC2959946

3-(3-Methoxy­benz­yl)-4-(2-methoxy­phen­yl)-1H-1,2,4-triazole-5(4H)-thione

Abstract

In the title compound, C17H17N3O2S, the five-membered ring forms dihedral angles of 53.02 (3) and 78.57 (3)° with the 3-meth­oxy-substituted and 2-meth­oxy-substituted benzene rings, respectively. In the crystal structure, mol­ecules are linked into centrosymmetric dimers via inter­molecular N—H(...)S hydrogen bonds.

Related literature

For background information on the biological activity of substituted triazole derivatives, see: Demirbas et al. (2002 [triangle]); Holla et al. (1998 [triangle]); Omar et al. (1986 [triangle]); Paulvannan et al. (2000 [triangle]); Turan-Zitouni et al. (1999 [triangle]); Kritsanida et al. (2002 [triangle]). For related structures, see: Öztürk et al. (2004a [triangle],b [triangle]); Zhang et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2345-scheme1.jpg

Experimental

Crystal data

  • C17H17N3O2S
  • M r = 327.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2345-efi1.jpg
  • a = 7.3941 (3) Å
  • b = 10.6459 (5) Å
  • c = 12.1940 (8) Å
  • α = 68.841 (5)°
  • β = 74.317 (5)°
  • γ = 75.187 (5)°
  • V = 848.37 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 293 (2) K
  • 0.40 × 0.24 × 0.15 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer
  • Absorption correction: integration (Gaussian; Coppens, 1970 [triangle]) T min = 0.946, T max = 0.983
  • 10764 measured reflections
  • 3708 independent reflections
  • 2064 reflections with I > 2σ(I)
  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.159
  • S = 1.10
  • 3708 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]) and DENZO (Otwin­owski & Minor, 1997 [triangle]); cell refinement: DIRAX/LSQ (Duisenberg, 1992 [triangle]); data reduction: EVALCCD (Duisenberg et al., 2003 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037215/lh2729sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037215/lh2729Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Substituted triazole derivatives display significant biological activity including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to structure, possibly being due to the presence of the —N—C=S unit (Omar et al., 1986). We are interested in the synthesis and biological activity of substituted triazole derivatives and report here the synthesis and crystal structure of the title compound, (I) (Fig. 1).

In the molecluar structure of (I), the bond lengths and angles are within normal ranges (Allen et al., 1987) and comparable with those observed in related structures (Öztürk et al., 2004a,b). The C7-S1 bond length [1.679 (3) A °] compares with 1.6773 (19) A ° in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4-triazole-5(4H)-thione (Ozturk et al., 2004a) and 1.668 (5) A ° in 4-amino-3-(1,2,3,4,5- pentahydroxypentyl)-1H-1,2,4-triazole-5(4H)-thione (Zhang et al., 2004). In the triazole ring, the N3-C8 bond [1.294 (4)] bond shows the expected double bond character.

The rings A (N1—N3/C7/C8), B (C1—C6) and C (C10—C15) are eesentially planar and dihedral angles between them are A/B = 78.57 (3)°, A/C = 53.02 (3)° and B/C = 16.23 (3)°. In the crystal structure, molecules are linked into centrosymmetric dimers via intermolecular N–H···S hydrogen bonds.

Experimental

The synthesis of the title compound was carried out by refluxing a solution of 4-(2-methoxyphenyl)-1-(2-(3-methoxyphenyl)acetyl)thiosemicarbazide (3.45 g, 10 mmol) in 2 M NaOH for 5 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield: 75%; m.p. 469–470 K).

Refinement

H atoms were placed in calculated positions with C-H = 0.93-0.97Å and N-H = 0.86Å and included in the refinement with Uiso(H) = 1.2Ueq(C,N). Although the atoms of substituted methoxy have larger than normal anisotropic displacement parameters, attempts to create disorder models did not improve the precision of the structure.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids (arbitrary spheres for H atoms).
Fig. 2.
Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
Fig. 3.
The reaction scheme.

Crystal data

C17H17N3O2SZ = 2
Mr = 327.40F(000) = 344
Triclinic, P1Dx = 1.282 Mg m3
Hall symbol: -P 1Melting point: 469(1) K
a = 7.3941 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6459 (5) ÅCell parameters from 10808 reflections
c = 12.1940 (8) Åθ = 1–27.5°
α = 68.841 (5)°µ = 0.20 mm1
β = 74.317 (5)°T = 293 K
γ = 75.187 (5)°Plate, colourless
V = 848.37 (8) Å30.40 × 0.24 × 0.15 mm

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer3708 independent reflections
Radiation source: fine-focus sealed tube2064 reflections with I > 2σ(I)
graphiteRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.8°
[var phi] and ω scans to fill the Ewald sphereh = −9→9
Absorption correction: integration (Gaussian; Coppens, 1970)k = −13→13
Tmin = 0.946, Tmax = 0.983l = −15→15
10764 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.10w = 1/[σ2(Fo2) + (0.0364P)2 + 0.6393P] where P = (Fo2 + 2Fc2)/3
3708 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.37112 (12)0.55979 (11)0.30006 (8)0.0515 (3)
N2−0.2330 (4)0.4093 (3)0.5026 (2)0.0410 (7)
H2−0.34250.41500.54990.049*
N1−0.0166 (3)0.4302 (3)0.3462 (2)0.0379 (6)
N3−0.0666 (4)0.3402 (3)0.5425 (2)0.0444 (7)
C7−0.2087 (4)0.4659 (3)0.3847 (3)0.0362 (7)
C100.3280 (4)0.1679 (3)0.4006 (3)0.0416 (8)
C10.0831 (4)0.4687 (4)0.2239 (3)0.0460 (9)
C80.0625 (4)0.3535 (3)0.4452 (3)0.0374 (7)
C110.4677 (5)0.1629 (4)0.3017 (3)0.0535 (9)
H110.52590.23850.25660.064*
O10.0235 (4)0.2702 (3)0.2152 (3)0.0745 (8)
C140.2995 (6)−0.0616 (4)0.4330 (4)0.0700 (12)
H140.2433−0.13800.47890.084*
C90.2686 (4)0.2945 (3)0.4391 (3)0.0446 (8)
H9A0.29880.27230.51730.054*
H9B0.34240.36300.38290.054*
C150.2434 (5)0.0546 (4)0.4662 (4)0.0591 (11)
H150.14770.05740.53330.071*
C20.1052 (5)0.3814 (5)0.1581 (3)0.0543 (10)
C30.2031 (6)0.4167 (6)0.0396 (4)0.0767 (15)
H30.22090.3601−0.00670.092*
C130.4385 (6)−0.0674 (4)0.3336 (4)0.0634 (11)
H130.4743−0.14600.31070.076*
C60.1539 (5)0.5894 (4)0.1775 (3)0.0605 (11)
H60.13740.64590.22370.073*
C120.5230 (6)0.0434 (4)0.2686 (4)0.0639 (11)
C50.2519 (6)0.6227 (6)0.0573 (4)0.0808 (15)
H50.30110.70340.02170.097*
O20.6618 (5)0.0512 (4)0.1674 (3)0.1103 (13)
C160.0674 (8)0.1673 (6)0.1580 (5)0.106 (2)
H16A0.02310.20460.08370.127*
H16B0.00550.09150.20940.127*
H16C0.20290.13660.14260.127*
C40.2727 (6)0.5350 (7)−0.0064 (4)0.0838 (17)
H40.33870.5582−0.08550.101*
C170.7351 (12)−0.0684 (7)0.1341 (7)0.181 (4)
H17A0.7803−0.14010.20070.217*
H17B0.8390−0.05200.06660.217*
H17C0.6375−0.09520.11340.217*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0403 (5)0.0619 (7)0.0415 (5)0.0027 (4)−0.0018 (4)−0.0162 (4)
N20.0386 (15)0.0399 (17)0.0390 (16)−0.0030 (12)0.0016 (12)−0.0155 (13)
N10.0363 (14)0.0392 (17)0.0346 (15)−0.0026 (12)0.0005 (11)−0.0154 (13)
N30.0486 (16)0.0385 (17)0.0425 (17)−0.0052 (13)−0.0046 (13)−0.0135 (14)
C70.0415 (17)0.0327 (19)0.0339 (17)−0.0070 (14)0.0042 (13)−0.0180 (15)
C100.0378 (17)0.035 (2)0.052 (2)0.0009 (14)−0.0134 (15)−0.0141 (16)
C10.0340 (17)0.059 (2)0.0374 (18)0.0044 (16)−0.0034 (14)−0.0182 (18)
C80.0442 (18)0.0298 (18)0.0399 (19)−0.0055 (14)−0.0060 (15)−0.0152 (15)
C110.063 (2)0.039 (2)0.054 (2)−0.0098 (17)−0.0022 (18)−0.0157 (18)
O10.086 (2)0.076 (2)0.076 (2)−0.0040 (17)−0.0174 (16)−0.0474 (18)
C140.062 (2)0.041 (2)0.099 (3)−0.0095 (19)−0.010 (2)−0.017 (2)
C90.0454 (19)0.039 (2)0.050 (2)−0.0018 (15)−0.0128 (16)−0.0164 (17)
C150.046 (2)0.044 (2)0.077 (3)−0.0036 (18)0.0007 (19)−0.020 (2)
C20.040 (2)0.075 (3)0.047 (2)0.0079 (19)−0.0101 (16)−0.030 (2)
C30.049 (2)0.124 (5)0.050 (3)0.015 (3)−0.007 (2)−0.041 (3)
C130.072 (3)0.040 (2)0.082 (3)0.003 (2)−0.022 (2)−0.029 (2)
C60.041 (2)0.068 (3)0.053 (2)−0.0121 (19)−0.0062 (17)0.003 (2)
C120.066 (3)0.057 (3)0.062 (3)−0.002 (2)0.000 (2)−0.027 (2)
C50.052 (2)0.102 (4)0.061 (3)−0.021 (2)−0.005 (2)0.007 (3)
O20.142 (3)0.076 (2)0.094 (3)−0.024 (2)0.042 (2)−0.049 (2)
C160.129 (5)0.094 (4)0.130 (5)0.021 (3)−0.062 (4)−0.077 (4)
C40.047 (2)0.137 (5)0.047 (3)−0.002 (3)0.000 (2)−0.020 (3)
C170.222 (8)0.116 (6)0.175 (7)−0.045 (5)0.100 (6)−0.102 (6)

Geometric parameters (Å, °)

S1—C71.679 (3)C9—H9A0.9700
N2—C71.324 (4)C9—H9B0.9700
N2—N31.377 (4)C15—H150.9300
N2—H20.8600C2—C31.390 (6)
N1—C71.369 (4)C3—C41.353 (7)
N1—C81.375 (4)C3—H30.9300
N1—C11.434 (4)C13—C121.358 (6)
N3—C81.294 (4)C13—H130.9300
C10—C111.367 (5)C6—C51.407 (6)
C10—C151.380 (5)C6—H60.9300
C10—C91.507 (5)C12—O21.366 (5)
C1—C61.380 (5)C5—C41.372 (7)
C1—C21.387 (5)C5—H50.9300
C8—C91.485 (4)O2—C171.407 (6)
C11—C121.402 (5)C16—H16A0.9599
C11—H110.9300C16—H16B0.9601
O1—C21.340 (5)C16—H16C0.9600
O1—C161.428 (5)C4—H40.9300
C14—C151.370 (5)C17—H17A0.9600
C14—C131.370 (6)C17—H17B0.9600
C14—H140.9299C17—H17C0.9599
C7—N2—N3113.7 (3)O1—C2—C1115.7 (3)
C7—N2—H2123.2O1—C2—C3125.5 (4)
N3—N2—H2123.1C1—C2—C3118.7 (5)
C7—N1—C8108.1 (2)C4—C3—C2118.4 (5)
C7—N1—C1125.4 (3)C4—C3—H3120.8
C8—N1—C1126.5 (2)C2—C3—H3120.8
C8—N3—N2103.9 (3)C12—C13—C14119.2 (4)
N2—C7—N1103.5 (3)C12—C13—H13120.3
N2—C7—S1129.2 (2)C14—C13—H13120.5
N1—C7—S1127.3 (2)C1—C6—C5116.9 (5)
C11—C10—C15119.2 (3)C1—C6—H6121.3
C11—C10—C9120.7 (3)C5—C6—H6121.7
C15—C10—C9120.1 (3)C13—C12—O2124.9 (4)
C6—C1—C2123.1 (4)C13—C12—C11120.6 (4)
C6—C1—N1118.8 (3)O2—C12—C11114.5 (4)
C2—C1—N1118.1 (4)C4—C5—C6119.1 (5)
N3—C8—N1110.8 (3)C4—C5—H5120.7
N3—C8—C9125.4 (3)C6—C5—H5120.1
N1—C8—C9123.8 (3)C12—O2—C17117.6 (4)
C10—C11—C12119.8 (4)O1—C16—H16A109.5
C10—C11—H11120.1O1—C16—H16B109.4
C12—C11—H11120.1H16A—C16—H16B109.5
C2—O1—C16117.5 (4)O1—C16—H16C109.5
C15—C14—C13120.9 (4)H16A—C16—H16C109.5
C15—C14—H14119.6H16B—C16—H16C109.5
C13—C14—H14119.5C3—C4—C5123.7 (5)
C8—C9—C10113.6 (3)C3—C4—H4118.3
C8—C9—H9A108.9C5—C4—H4118.1
C10—C9—H9A108.9O2—C17—H17A108.6
C8—C9—H9B108.8O2—C17—H17B109.5
C10—C9—H9B108.7H17A—C17—H17B109.5
H9A—C9—H9B107.7O2—C17—H17C110.4
C14—C15—C10120.4 (4)H17A—C17—H17C109.5
C14—C15—H15119.9H17B—C17—H17C109.5
C10—C15—H15119.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.862.423.277 (3)172.

Symmetry codes: (i) −x−1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2729).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst 27, 435.
  • Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.
  • Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem.10, 3717–3723. [PubMed]
  • Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  • Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  • Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Farmaco, 53, 574–578. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou- Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Farmaco, 57, 253–257. [PubMed]
  • Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). Heterocycl. Chem.23, 1339–1341.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.
  • Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.
  • Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Farmaco, 54, 218–223. [PubMed]
  • Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography