PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1571.
Published online 2008 November 20. doi:  10.1107/S1600536808037902
PMCID: PMC2959945

Di-μ1,1-azido-bis­[azido­(5,5′-dimethyl-2,2′-bipyridine)nickel(II)]

Abstract

In the title azide-bridged dinuclear centrosymmetric nickel(II) complex, [Ni2(N3)4(C12H12N2)2], the NiII atom is five-coordinated by two N atoms of the 5,5′-dimethyl-2,2′-bipyridine ligand and three N atoms from three azide ligands in a distorted trigonal–bipyramidal geometry. The Ni(...)Ni distance is 3.2398 (12) Å.

Related literature

For general background, see: Abramo et al. (2002 [triangle]); Dey et al. (2007 [triangle]); Jiang et al. (2005 [triangle]). For related structures, see: Fu et al. (2005 [triangle]); Song et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1571-scheme1.jpg

Experimental

Crystal data

  • [Ni2(N3)4(C12H12N2)2]
  • M r = 654.01
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1571-efi1.jpg
  • a = 7.938 (2) Å
  • b = 15.067 (3) Å
  • c = 11.755 (2) Å
  • β = 91.650 (2)°
  • V = 1405.3 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.39 mm−1
  • T = 298 (2) K
  • 0.13 × 0.10 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.840, T max = 0.897
  • 11588 measured reflections
  • 3060 independent reflections
  • 2165 reflections with I > 2σ(I)
  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056
  • wR(F 2) = 0.149
  • S = 1.03
  • 3060 reflections
  • 192 parameters
  • 14 restraints
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.77 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037902/ci2712sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037902/ci2712Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Polynuclear complexes play an important role in many fields, such as catalysis and magnetism (Dey et al., 2007; Jiang et al., 2005; Abramo et al., 2002). The main strategy for the design of the polynuclear complexes is to use suitable bridging ligands. In this paper, we report the synthesis and molecular structure of the title azide-bridged dinuclear nickel(II) complex derived from 5,5'-dimethyl-[2,2']bipyridine.

The molecule of the title complex is located on a crystallographic centre of inversion (Fig. 1). The complex contains two NiL (L is 5,5'-dimethyl-[2,2']bipyridine) units connected to each other by two bridging azide ligands. The NiII atom in the complex is five-coordinated by two N atoms of 5,5'-dimethyl-[2,2']bipyridine ligand and by three N atoms from three azide ligands in a trigonal-bipyramidal geometry. The bond lengths subtended at the metal center are within normal ranges (Song et al., 2007; Fu et al., 2005). The Ni···Ni distance is 3.2398 (12) Å.

Experimental

5,5'-Dimethyl-[2,2']bipyridine (2 mmol, 368.3 mg), sodium azide (4 mmol, 261.2 mg) and nickel acetate tetrahydrate (2 mmol, 497.8 mg) were dissolved in methanol (100 ml). The mixture was stirred for 30 min at room temperature to give a green solution. The solution was kept still in air for a week, green block-shaped crystals of the title complex were formed.

Refinement

H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The displacement ellipsoids of atoms N4 and N5 are extremely elongated and hence the Uij parameters of these atoms were restrained to an approximate isotropic behaviour. The distance between atoms N3 and N4 was restrained to 1.23 (1) Å and that between atoms N4 and N5 was restrained to 1.13 (1) Å.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

[Ni2(N3)4(C12H12N2)2]F000 = 672
Mr = 654.01Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1576 reflections
a = 7.938 (2) Åθ = 2.3–25.1º
b = 15.067 (3) ŵ = 1.39 mm1
c = 11.755 (2) ÅT = 298 (2) K
β = 91.650 (2)ºBlock, green
V = 1405.3 (5) Å30.13 × 0.10 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer3060 independent reflections
Radiation source: fine-focus sealed tube2165 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.063
T = 298(2) Kθmax = 27.0º
[var phi] and ω scanθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −10→10
Tmin = 0.840, Tmax = 0.897k = −19→19
11588 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H-atom parameters constrained
wR(F2) = 0.149  w = 1/[σ2(Fo2) + (0.0643P)2 + 1.1062P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3060 reflectionsΔρmax = 0.67 e Å3
192 parametersΔρmin = −0.77 e Å3
14 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.03235 (7)0.44079 (4)0.11356 (5)0.0386 (2)
N10.2280 (5)0.3549 (3)0.1785 (4)0.0491 (10)
N2−0.0777 (5)0.3158 (3)0.0994 (3)0.0416 (9)
N30.0029 (5)0.5108 (3)0.2626 (4)0.0459 (11)
N40.0958 (8)0.5106 (4)0.3252 (5)0.0857 (18)
N50.1983 (12)0.5160 (6)0.4040 (7)0.144 (3)
N60.1668 (5)0.4913 (3)−0.0170 (4)0.0583 (12)
N70.2901 (6)0.4579 (3)−0.0571 (4)0.0594 (12)
N80.4096 (8)0.4282 (4)−0.0950 (6)0.094 (2)
C10.1794 (6)0.2706 (3)0.1926 (4)0.0445 (11)
C20.2820 (7)0.2113 (4)0.2525 (5)0.0573 (14)
H20.24750.15290.26280.069*
C30.4356 (7)0.2398 (4)0.2967 (5)0.0632 (16)
H30.50570.20000.33570.076*
C40.4857 (6)0.3259 (4)0.2836 (5)0.0575 (14)
C50.3771 (6)0.3811 (4)0.2219 (5)0.0570 (14)
H50.41000.43960.21020.068*
C60.6485 (7)0.3623 (5)0.3348 (5)0.085 (2)
H6A0.62890.38470.40970.128*
H6B0.68860.40950.28780.128*
H6C0.73120.31590.33930.128*
C70.0139 (6)0.2474 (3)0.1428 (4)0.0442 (12)
C8−0.0506 (7)0.1625 (4)0.1383 (5)0.0626 (15)
H80.01270.11550.16800.075*
C9−0.2070 (8)0.1468 (4)0.0904 (5)0.0652 (16)
H9−0.25010.08940.08930.078*
C10−0.3023 (6)0.2160 (4)0.0433 (5)0.0530 (13)
C11−0.2308 (6)0.2993 (3)0.0520 (4)0.0477 (12)
H11−0.29250.34720.02330.057*
C12−0.4711 (7)0.2026 (4)−0.0126 (5)0.0657 (16)
H12A−0.54900.18240.04270.098*
H12B−0.46290.1591−0.07190.098*
H12C−0.51030.2577−0.04480.098*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0339 (3)0.0328 (3)0.0487 (4)−0.0009 (3)−0.0026 (2)0.0057 (3)
N10.039 (2)0.048 (3)0.060 (3)0.0018 (19)−0.003 (2)0.004 (2)
N20.039 (2)0.040 (2)0.046 (2)0.0000 (17)−0.0016 (18)−0.0013 (17)
N30.035 (2)0.036 (2)0.067 (3)0.0025 (18)−0.006 (2)−0.012 (2)
N40.119 (5)0.043 (3)0.097 (5)0.001 (4)0.045 (4)−0.006 (3)
N50.165 (7)0.149 (6)0.115 (6)−0.004 (6)−0.029 (5)0.002 (5)
N60.038 (2)0.066 (3)0.072 (3)0.010 (2)0.005 (2)0.021 (2)
N70.051 (3)0.056 (3)0.070 (3)0.005 (2)−0.002 (2)0.016 (2)
N80.071 (4)0.105 (5)0.108 (5)0.037 (3)0.020 (3)0.011 (4)
C10.048 (3)0.043 (3)0.043 (3)0.009 (2)0.004 (2)0.001 (2)
C20.065 (4)0.048 (3)0.058 (3)0.010 (3)0.002 (3)0.002 (3)
C30.058 (4)0.084 (4)0.047 (3)0.025 (3)−0.009 (3)0.004 (3)
C40.041 (3)0.080 (4)0.051 (3)0.008 (3)0.001 (2)−0.001 (3)
C50.044 (3)0.064 (4)0.063 (4)−0.003 (3)−0.001 (3)0.002 (3)
C60.049 (3)0.131 (7)0.074 (4)−0.001 (4)−0.014 (3)0.003 (4)
C70.049 (3)0.038 (3)0.046 (3)0.003 (2)0.004 (2)0.001 (2)
C80.060 (4)0.047 (3)0.080 (4)0.003 (3)−0.002 (3)0.013 (3)
C90.067 (4)0.047 (3)0.081 (4)−0.016 (3)−0.001 (3)0.004 (3)
C100.049 (3)0.056 (3)0.054 (3)−0.008 (3)0.006 (2)−0.004 (3)
C110.045 (3)0.047 (3)0.050 (3)0.001 (2)0.001 (2)0.002 (2)
C120.054 (3)0.075 (4)0.068 (4)−0.020 (3)−0.002 (3)−0.009 (3)

Geometric parameters (Å, °)

Ni1—N12.145 (4)C3—H30.93
Ni1—N22.081 (4)C4—C51.387 (7)
Ni1—N32.064 (5)C4—C61.512 (8)
Ni1—N62.041 (4)C5—H50.93
Ni1—N6i2.175 (4)C6—H6A0.96
N1—C51.336 (6)C6—H6B0.96
N1—C11.339 (6)C6—H6C0.96
N2—C111.345 (6)C7—C81.379 (7)
N2—C71.352 (6)C8—C91.369 (8)
N3—N41.027 (6)C8—H80.93
N4—N51.217 (7)C9—C101.394 (8)
N6—N71.209 (6)C9—H90.93
N6—Ni1i2.175 (4)C10—C111.380 (7)
N7—N81.149 (7)C10—C121.489 (7)
C1—C21.387 (7)C11—H110.93
C1—C71.465 (7)C12—H12A0.96
C2—C31.380 (8)C12—H12B0.96
C2—H20.93C12—H12C0.96
C3—C41.367 (8)
N6—Ni1—N3121.5 (2)C3—C4—C6123.2 (5)
N6—Ni1—N2120.32 (18)C5—C4—C6120.1 (6)
N3—Ni1—N2118.23 (17)N1—C5—C4123.5 (5)
N6—Ni1—N195.97 (17)N1—C5—H5118.2
N3—Ni1—N196.02 (17)C4—C5—H5118.2
N2—Ni1—N177.30 (15)C4—C6—H6A109.5
N6—Ni1—N6i79.63 (18)C4—C6—H6B109.5
N3—Ni1—N6i95.99 (18)H6A—C6—H6B109.5
N2—Ni1—N6i94.98 (16)C4—C6—H6C109.5
N1—Ni1—N6i167.78 (18)H6A—C6—H6C109.5
C5—N1—C1119.3 (5)H6B—C6—H6C109.5
C5—N1—Ni1125.6 (4)N2—C7—C8119.8 (5)
C1—N1—Ni1114.1 (3)N2—C7—C1115.8 (4)
C11—N2—C7119.0 (4)C8—C7—C1124.3 (5)
C11—N2—Ni1124.9 (3)C9—C8—C7120.5 (5)
C7—N2—Ni1116.1 (3)C9—C8—H8119.8
N4—N3—Ni1120.7 (5)C7—C8—H8119.8
N3—N4—N5174.4 (8)C8—C9—C10120.6 (5)
N7—N6—Ni1125.8 (4)C8—C9—H9119.7
N7—N6—Ni1i125.2 (4)C10—C9—H9119.7
Ni1—N6—Ni1i100.37 (18)C11—C10—C9115.7 (5)
N8—N7—N6178.1 (6)C11—C10—C12121.3 (5)
N1—C1—C2120.5 (5)C9—C10—C12123.0 (5)
N1—C1—C7115.8 (4)N2—C11—C10124.3 (5)
C2—C1—C7123.8 (5)N2—C11—H11117.8
C3—C2—C1119.3 (5)C10—C11—H11117.8
C3—C2—H2120.3C10—C12—H12A109.5
C1—C2—H2120.3C10—C12—H12B109.5
C4—C3—C2120.7 (5)H12A—C12—H12B109.5
C4—C3—H3119.7C10—C12—H12C109.5
C2—C3—H3119.7H12A—C12—H12C109.5
C3—C4—C5116.7 (5)H12B—C12—H12C109.5

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2712).

References

  • Abramo, G. P., Li, L. & Marks, T. J. (2002). J. Am. Chem. Soc.124, 13966–13967. [PubMed]
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dey, S. K., Abedin, T. S. M., Dawe, L. N., Tandon, S. S., Collins, J. L., Thompson, L. K., Postnikov, A. V., Alam, M. S. & Muller, P. (2007). Inorg. Chem.46, 7767–7781. [PubMed]
  • Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1897–m1899.
  • Jiang, Y.-B., Kou, H.-Z., Wang, R.-J., Cui, A.-L. & Ribas, J. (2005). Inorg. Chem.44, 709–715. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Song, W.-C., Zhang, M.-J., Tao, Y. & Li, J.-R. (2007). Acta Cryst. E63, m3062.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography