PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2365.
Published online 2008 November 13. doi:  10.1107/S1600536808037124
PMCID: PMC2959942

1-{2-[(2-hydroxybenzylidene)-amino]-ethyl}-3-methyl-3H-imidazolium hexafluorophosphate

Abstract

The title Schiff base compound, C13H16N3O+·PF6 , was derived from the condensation of 2-hydroxy­benaldehyde with the ionic liquid 1-(2-amino­ethyl)-3-methyl­imidazolium hexa­fluoro­phosphate in an ethanol solution. The asymmetric unit comprises one cation and two PF6 anions. The dihedral angle between the aromatic and imidazole rings is 15.2 (2)°. An intra­molecular O—H(...)N hydrogen bond is found which generates an S(6) ring motif.

Related literature

For the synthesis of Schiff bases, see: Pradeep (2005 [triangle]); Butcher et al. (2005 [triangle]). For background on ionic liquids and their applications, see: Cai et al. (2006 [triangle]); Peng & Song (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2365-scheme1.jpg

Experimental

Crystal data

  • C13H16N3O+·PF6
  • M r = 375.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2365-efi1.jpg
  • a = 28.239 (15) Å
  • b = 7.134 (4) Å
  • c = 18.017 (9) Å
  • β = 118.342 (6)°
  • V = 3194 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 298 (2) K
  • 0.32 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.926, T max = 0.965
  • 8091 measured reflections
  • 2969 independent reflections
  • 1965 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.066
  • wR(F 2) = 0.215
  • S = 1.01
  • 2969 reflections
  • 221 parameters
  • H-atom parameters constrained
  • Δρmax = 0.72 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037124/tk2322sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037124/tk2322Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Natural Science Foundation of China (No. 20672046) and the Guangdong Natural Science Foundation (No. 04010458) for financial support.

supplementary crystallographic information

Comment

The use of functionalized ionic liquids continues to receive attention in chemical synthesis and engineering, including as catalysts in organic synthesis (Cai et al., 2006; Peng & Song, 2006). Schiff base compounds are one of most prevalent mixed-donor ligands in the field of coordination chemistry (Pradeep, 2005; Butcher et al., 2005). Herein, we report the crystal structure of the title salt, (I).

Compound (I) is a Schiff base formed from the reaciton of 2-hydroxybenaldehyde and ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate. The molecular structure of the cation is shown in Fig. 1. The aromatic and imidazole rings form a dihedral angle of 15.2 (2)°. In the cation, an intramolecular O1—H1···N1 hydrogen bond leads to a six-membered ring S(6) motif, Table 1.

Experimental

A mixture of the ionic liquid 1-(2-aminoethyl)-3-methylimidazolium hexafluorophosphate (5 mmol) and 2-hydroxybenzaldehyde (5 mmol) in ethanol was stirred for 4 h. After the completion of the reaction, the excess ethanol was removed by distillation. The colorless solid obtained was filtered and washed with ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of (I) at room temperature.

Refinement

The H atom bound to O1 was located from a difference Fourier map and refined as riding, with O—H = 0.82 Å, and with Uiso(H) = 1.5 Ueq(O). The remaining H atoms were located in a difference syntheses and refined with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 - 1.5Ueq(C)].

Figures

Fig. 1.
The molecular structure of the cation in (I) showing the atom numbering Scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C13H16N3O+·PF6F000 = 1536
Mr = 375.26Dx = 1.561 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2060 reflections
a = 28.239 (15) Åθ = 2.9–22.9º
b = 7.134 (4) ŵ = 0.24 mm1
c = 18.017 (9) ÅT = 298 (2) K
β = 118.342 (6)ºPrism, yellow
V = 3194 (3) Å30.32 × 0.25 × 0.15 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer2969 independent reflections
Radiation source: fine-focus sealed tube1965 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.043
T = 298(2) Kθmax = 25.5º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −19→34
Tmin = 0.926, Tmax = 0.965k = −8→8
8091 measured reflectionsl = −21→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.215  w = 1/[σ2(Fo2) + (0.095P)2 + 15.5678P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2969 reflectionsΔρmax = 0.72 e Å3
221 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.75000.75000.00000.0501 (5)
P21.00000.6525 (3)0.25000.0583 (5)
F10.81350 (11)0.7434 (5)0.05733 (18)0.0696 (9)
F20.74441 (13)0.5737 (5)0.04985 (19)0.0742 (9)
F30.74598 (13)0.8887 (5)0.06617 (18)0.0737 (9)
F41.0089 (2)0.5007 (9)0.3170 (3)0.159 (2)
F50.93929 (17)0.6504 (10)0.2199 (4)0.162 (2)
F61.0081 (3)0.8057 (8)0.3156 (3)0.156 (2)
O10.80570 (15)0.2094 (7)0.2303 (3)0.0801 (12)
H10.81370.19730.19230.120*
N10.86812 (17)0.1728 (6)0.1638 (3)0.0551 (10)
N20.86519 (16)0.3299 (5)−0.0349 (2)0.0513 (10)
N30.85173 (18)0.3101 (6)−0.1622 (3)0.0591 (11)
C10.8504 (2)0.1958 (7)0.3054 (3)0.0566 (12)
C20.8461 (3)0.2063 (8)0.3792 (4)0.0671 (15)
H20.81260.22180.37620.081*
C30.8914 (3)0.1938 (8)0.4566 (4)0.0722 (16)
H30.88820.20280.50550.087*
C40.9408 (3)0.1686 (8)0.4625 (4)0.0719 (16)
H40.97100.15970.51520.086*
C50.9460 (2)0.1563 (7)0.3911 (3)0.0626 (13)
H50.97990.13810.39560.075*
C60.90111 (19)0.1708 (6)0.3114 (3)0.0491 (11)
C70.9077 (2)0.1593 (7)0.2363 (3)0.0536 (12)
H70.94190.14160.24200.064*
C80.8777 (2)0.1599 (7)0.0908 (3)0.0600 (13)
H8A0.85960.05080.05710.072*
H8B0.91600.14750.10950.072*
C90.8567 (2)0.3333 (8)0.0397 (3)0.0634 (14)
H9A0.81850.34500.02170.076*
H9B0.87480.44160.07410.076*
C100.9137 (2)0.3503 (8)−0.0329 (3)0.0612 (13)
H100.94660.36860.01500.073*
C110.9053 (2)0.3392 (8)−0.1120 (3)0.0627 (13)
H110.93120.3494−0.12970.075*
C120.8285 (2)0.3056 (7)−0.1133 (3)0.0612 (13)
H120.79200.2881−0.13190.073*
C130.8247 (3)0.2925 (10)−0.2541 (3)0.087 (2)
H13A0.78730.2649−0.27420.131*
H13B0.84100.1930−0.26990.131*
H13C0.82800.4080−0.27860.131*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0469 (10)0.0621 (11)0.0450 (9)0.0109 (8)0.0248 (8)0.0034 (8)
P20.0526 (11)0.0736 (13)0.0541 (10)0.0000.0296 (9)0.000
F10.0422 (16)0.088 (2)0.0708 (19)0.0081 (15)0.0202 (14)−0.0014 (16)
F20.084 (2)0.075 (2)0.0696 (19)0.0024 (17)0.0408 (17)0.0159 (16)
F30.084 (2)0.082 (2)0.0611 (18)0.0150 (17)0.0393 (17)−0.0107 (15)
F40.181 (5)0.157 (5)0.135 (4)−0.002 (4)0.073 (4)0.072 (4)
F50.063 (3)0.243 (7)0.174 (5)−0.004 (3)0.051 (3)−0.033 (5)
F60.209 (6)0.150 (5)0.108 (4)−0.003 (4)0.076 (4)−0.052 (3)
O10.055 (2)0.116 (3)0.080 (3)−0.006 (2)0.040 (2)−0.018 (2)
N10.058 (3)0.061 (2)0.057 (2)0.001 (2)0.035 (2)−0.002 (2)
N20.056 (2)0.051 (2)0.046 (2)0.0114 (18)0.0238 (19)0.0029 (17)
N30.069 (3)0.056 (2)0.051 (2)0.004 (2)0.027 (2)0.0005 (19)
C10.062 (3)0.053 (3)0.070 (3)−0.009 (2)0.043 (3)−0.004 (2)
C20.078 (4)0.063 (3)0.089 (4)−0.009 (3)0.062 (4)−0.006 (3)
C30.111 (5)0.056 (3)0.077 (4)−0.003 (3)0.067 (4)0.005 (3)
C40.092 (4)0.068 (4)0.060 (3)0.007 (3)0.040 (3)0.009 (3)
C50.064 (3)0.063 (3)0.063 (3)0.011 (3)0.033 (3)0.010 (3)
C60.056 (3)0.046 (2)0.053 (3)0.002 (2)0.031 (2)0.003 (2)
C70.057 (3)0.050 (3)0.069 (3)0.005 (2)0.042 (3)0.005 (2)
C80.072 (3)0.061 (3)0.062 (3)0.003 (3)0.044 (3)−0.006 (2)
C90.079 (4)0.065 (3)0.057 (3)0.016 (3)0.042 (3)0.003 (2)
C100.049 (3)0.068 (3)0.063 (3)0.003 (2)0.024 (2)0.003 (3)
C110.065 (3)0.067 (3)0.067 (3)0.006 (3)0.040 (3)0.008 (3)
C120.056 (3)0.062 (3)0.066 (3)−0.001 (2)0.029 (3)−0.005 (3)
C130.105 (5)0.101 (5)0.047 (3)0.002 (4)0.029 (3)−0.005 (3)

Geometric parameters (Å, °)

P1—F1i1.589 (3)C1—C61.396 (7)
P1—F11.589 (3)C2—C31.377 (8)
P1—F31.594 (3)C2—H20.9300
P1—F3i1.594 (3)C3—C41.359 (8)
P1—F2i1.596 (3)C3—H30.9300
P1—F21.596 (3)C4—C51.366 (7)
P2—F5ii1.533 (4)C4—H40.9300
P2—F51.533 (4)C5—C61.398 (7)
P2—F61.544 (5)C5—H50.9300
P2—F6ii1.544 (5)C6—C71.454 (6)
P2—F4ii1.550 (5)C7—H70.9300
P2—F41.550 (5)C8—C91.487 (7)
O1—C11.346 (6)C8—H8A0.9700
O1—H10.8200C8—H8B0.9700
N1—C71.256 (6)C9—H9A0.9700
N1—C81.467 (6)C9—H9B0.9700
N2—C121.308 (6)C10—C111.333 (7)
N2—C101.360 (6)C10—H100.9300
N2—C91.474 (6)C11—H110.9300
N3—C121.324 (6)C12—H120.9300
N3—C111.360 (7)C13—H13A0.9600
N3—C131.464 (6)C13—H13B0.9600
C1—C21.392 (7)C13—H13C0.9600
F1i—P1—F1180.00 (12)C1—C2—H2119.9
F1i—P1—F390.50 (16)C4—C3—C2120.9 (5)
F1—P1—F389.50 (16)C4—C3—H3119.6
F1i—P1—F3i89.50 (16)C2—C3—H3119.6
F1—P1—F3i90.50 (16)C3—C4—C5120.1 (6)
F3—P1—F3i180.0 (2)C3—C4—H4120.0
F1i—P1—F2i89.62 (17)C5—C4—H4120.0
F1—P1—F2i90.38 (17)C4—C5—C6120.8 (5)
F3—P1—F2i89.60 (17)C4—C5—H5119.6
F3i—P1—F2i90.40 (17)C6—C5—H5119.6
F1i—P1—F290.38 (17)C1—C6—C5119.1 (4)
F1—P1—F289.62 (17)C1—C6—C7121.1 (5)
F3—P1—F290.40 (17)C5—C6—C7119.8 (4)
F3i—P1—F289.60 (17)N1—C7—C6121.3 (4)
F2i—P1—F2180.0 (2)N1—C7—H7119.4
F5ii—P2—F5178.9 (5)C6—C7—H7119.4
F5ii—P2—F690.1 (4)N1—C8—C9108.2 (4)
F5—P2—F690.7 (3)N1—C8—H8A110.1
F5ii—P2—F6ii90.7 (3)C9—C8—H8A110.1
F5—P2—F6ii90.1 (3)N1—C8—H8B110.1
F6—P2—F6ii89.9 (5)C9—C8—H8B110.1
F5ii—P2—F4ii90.6 (3)H8A—C8—H8B108.4
F5—P2—F4ii88.6 (3)N2—C9—C8111.1 (4)
F6—P2—F4ii179.0 (4)N2—C9—H9A109.4
F6ii—P2—F4ii89.3 (3)C8—C9—H9A109.4
F5ii—P2—F488.6 (3)N2—C9—H9B109.4
F5—P2—F490.6 (3)C8—C9—H9B109.4
F6—P2—F489.3 (3)H9A—C9—H9B108.0
F6ii—P2—F4179.0 (4)C11—C10—N2107.4 (5)
F4ii—P2—F491.4 (5)C11—C10—H10126.3
C1—O1—H1109.5N2—C10—H10126.3
C7—N1—C8118.3 (4)C10—C11—N3107.3 (5)
C12—N2—C10108.3 (4)C10—C11—H11126.4
C12—N2—C9126.8 (5)N3—C11—H11126.4
C10—N2—C9124.9 (4)N2—C12—N3109.1 (5)
C12—N3—C11107.9 (4)N2—C12—H12125.5
C12—N3—C13126.4 (5)N3—C12—H12125.5
C11—N3—C13125.7 (5)N3—C13—H13A109.5
O1—C1—C2119.5 (5)N3—C13—H13B109.5
O1—C1—C6121.6 (4)H13A—C13—H13B109.5
C2—C1—C6118.9 (5)N3—C13—H13C109.5
C3—C2—C1120.3 (5)H13A—C13—H13C109.5
C3—C2—H2119.9H13B—C13—H13C109.5
O1—C1—C2—C3−179.6 (5)C7—N1—C8—C9−123.0 (5)
C6—C1—C2—C30.6 (8)C12—N2—C9—C8107.3 (6)
C1—C2—C3—C4−0.9 (8)C10—N2—C9—C8−72.1 (7)
C2—C3—C4—C50.4 (9)N1—C8—C9—N2179.9 (4)
C3—C4—C5—C60.5 (9)C12—N2—C10—C110.5 (6)
O1—C1—C6—C5−179.6 (5)C9—N2—C10—C11180.0 (5)
C2—C1—C6—C50.3 (7)N2—C10—C11—N3−0.6 (6)
O1—C1—C6—C70.3 (7)C12—N3—C11—C100.5 (6)
C2—C1—C6—C7−179.9 (5)C13—N3—C11—C10178.9 (5)
C4—C5—C6—C1−0.8 (8)C10—N2—C12—N3−0.1 (6)
C4—C5—C6—C7179.3 (5)C9—N2—C12—N3−179.6 (4)
C8—N1—C7—C6−180.0 (4)C11—N3—C12—N2−0.2 (6)
C1—C6—C7—N10.5 (7)C13—N3—C12—N2−178.6 (5)
C5—C6—C7—N1−179.7 (5)

Symmetry codes: (i) −x+3/2, −y+3/2, −z; (ii) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.572 (5)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2322).

References

  • Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Basu Baul, T. S., Singh, K. S. & Smith, F. E. (2005). Acta Cryst. E61, o1007–o1009.
  • Cai, Y.-Q., Peng, Y.-Q. & Song, G.-H. (2006). Catal. Lett.109, 61–64.
  • Peng, Y.-Q. & Song, G.-H. (2006). Catal. Commun.8, 111–114.
  • Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography