PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2361.
Published online 2008 November 13. doi:  10.1107/S1600536808036416
PMCID: PMC2959937

(4R)-4-(2-Allyl-2H-1,2,3-triazol-4-yl)-1,2-O-isopropyl­idene-l-threose

Abstract

X-ray crystallography unequivocally confirmed the structure of the title compound, C12H17N3O4, as (4R)-4-(2-allyl-2H-1,2,3-triazol-4-yl)-1,2-O-isopropyl­idene-l-threose. The absolute configuration was determined by the use of d-glucorono-3,6-lactone as the starting material. The crystal structure consists of hydrogen-bonded chains of mol­ecules running parallel to the a axis. There are no unusual packing features.

Related literature

For related background information on the biotechnological inter­conversion of monosaccharides and other sugars, see: Izumori (2002 [triangle], 2006 [triangle]); Granstrom et al. (2004 [triangle]); Yoshihara et al. (2008 [triangle]); Booth et al. (2008 [triangle]); Jenkinson, Booth, Gullapalli et al. (2008 [triangle]); Jenkinson, Booth, Yoshihara et al. (2008 [triangle]); Gullapalli et al. (2007 [triangle]); Jenkinson, Booth, Best et al. (2008 [triangle]). For related literature, see: Görbitz (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2361-scheme1.jpg

Experimental

Crystal data

  • C12H17N3O4
  • M r = 267.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2361-efi1.jpg
  • a = 5.3959 (2) Å
  • b = 9.6233 (3) Å
  • c = 25.4532 (9) Å
  • V = 1321.69 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 150 K
  • 0.30 × 0.20 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.82, T max = 1.00 (expected range = 0.817–0.997)
  • 9466 measured reflections
  • 1528 independent reflections
  • 1194 reflections with I > 2σ(I)
  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.098
  • S = 0.93
  • 1528 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: COLLECT (Nonius, 2001 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036416/lh2725sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036416/lh2725Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Oxford University Crystallography Service for access to equipment.

supplementary crystallographic information

Comment

The process for the biotechnological interconversion of monosaccharides developed by Izumori (Izumori, 2002; Izumori, 2006; Granstrom et al., 2004), has been seen to be generally applicable to other sugar derivatives such as 1-deoxy sugars (Yoshihara et al., 2008; Booth et al. 2008; Jenkinson, Booth, Gullapalli et al., 2008; Jenkinson, Booth, Yoshihara et al., 2008; Gullapalli et al., 2007). To evaluate the applicability of this process to 2-deoxy sugars and their derivatives a variety of carbon chain extension reactions were investigated, for example, addition of lithium tert-butyl acetate to sugar lactones (Jenkinson, Booth, Best et al., 2008) or addition of allyl magnesium bromide to an aldose.

Reaction of lactol 1 (Fig. 1) with 2.5 equivalents of allyl magnesium bromide generated a single isolable product along with recovered starting material. X-ray crystallography identified the compound as 4R-4-(2-allyl-2H-1,2,3-triazole-4-yl)-1,2-O-isopropylidene-L-threose 2 (Fig. 2) rather than the anticipated addition product 3. The crystal structure was seen to consist of alternating chains of hydrogen-bonded molecules running parallel to the a-axis (Fig. 3).Only classic intermolecular hydrogen bonding has been considered. The absolute configuration was determined from the starting material.

Experimental

The title compound was recrystallized by vapour diffusion from a mixture of diethyl ether and cyclohexane: m.p. 361–364 K; [α]D25 -13.9 (c, 0.69 in CHCl3).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.22) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Synthetic Scheme
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
Packing diagram for the title compound projected along the b-axis. Hydrogen bonds are indicated by dotted lines.

Crystal data

C12H17N3O4F000 = 568
Mr = 267.28Dx = 1.343 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1500 reflections
a = 5.3959 (2) Åθ = 5–26º
b = 9.6233 (3) ŵ = 0.10 mm1
c = 25.4532 (9) ÅT = 150 K
V = 1321.69 (8) Å3Plate, colourless
Z = 40.30 × 0.20 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer1194 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.096
T = 150 Kθmax = 26.0º
ω scansθmin = 5.3º
Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997)h = −6→6
Tmin = 0.82, Tmax = 1.00k = −11→11
9466 measured reflectionsl = −30→31
1528 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041  w = 1/[σ2(F2) + (0.04P)2 + 0.59P], where P = [max(Fo2,0) + 2Fc2]/3
wR(F2) = 0.098(Δ/σ)max = 0.0001
S = 0.93Δρmax = 0.32 e Å3
1528 reflectionsΔρmin = −0.33 e Å3
172 parametersExtinction correction: None
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.0189 (4)0.60546 (19)0.14662 (7)0.0395
C21.0670 (5)0.7244 (3)0.17865 (11)0.0366
C30.8174 (6)0.8008 (3)0.17938 (10)0.0374
O40.6798 (4)0.7427 (2)0.13781 (7)0.0436
C50.8248 (6)0.6390 (3)0.11107 (11)0.0407
C60.9294 (7)0.7022 (4)0.06094 (12)0.0579
C70.6697 (7)0.5117 (4)0.10209 (15)0.0608
O80.7063 (4)0.7727 (2)0.22853 (7)0.0394
C90.8362 (6)0.6572 (3)0.25347 (11)0.0371
C101.1041 (5)0.6779 (3)0.23535 (11)0.0371
O111.2131 (4)0.7866 (2)0.26506 (8)0.0425
C120.7862 (6)0.6641 (3)0.31060 (11)0.0359
N130.6792 (5)0.5578 (2)0.33594 (9)0.0372
N140.6586 (5)0.6032 (2)0.38514 (9)0.0372
N150.7386 (5)0.7336 (2)0.39351 (9)0.0406
C160.8223 (6)0.7724 (3)0.34651 (11)0.0396
C170.5321 (6)0.5246 (3)0.42598 (12)0.0404
C180.2777 (6)0.5809 (3)0.43621 (12)0.0439
C190.1964 (7)0.6160 (3)0.48272 (12)0.0499
H211.20900.78050.16650.0468*
H310.84200.90450.17480.0468*
H610.78970.73210.03900.0897*
H621.03080.63300.04330.0901*
H631.02620.78150.07270.0903*
H730.53300.53600.07900.0953*
H720.76990.44020.08590.0956*
H710.60440.48090.13560.0950*
H910.77570.56740.23820.0502*
H1011.19900.58960.23600.0485*
H1610.89890.85950.33890.0499*
H1710.51560.42880.41380.0506*
H1720.63240.53000.45840.0502*
H1810.17300.59140.40600.0573*
H1920.03140.65240.48570.0646*
H1910.30380.60460.51280.0648*
H1111.36790.79270.25450.0633*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0413 (12)0.0331 (10)0.0440 (11)0.0027 (10)−0.0005 (10)−0.0048 (9)
C20.0328 (14)0.0335 (15)0.0434 (16)−0.0013 (13)0.0025 (13)−0.0016 (13)
C30.0372 (14)0.0345 (14)0.0406 (15)0.0007 (14)0.0016 (14)0.0007 (13)
O40.0369 (10)0.0492 (12)0.0447 (11)0.0076 (11)−0.0044 (10)−0.0066 (10)
C50.0407 (16)0.0378 (15)0.0436 (16)0.0052 (15)−0.0022 (15)−0.0015 (13)
C60.070 (2)0.058 (2)0.0457 (18)0.0116 (19)0.0039 (18)0.0051 (17)
C70.057 (2)0.0484 (19)0.077 (2)−0.007 (2)−0.013 (2)−0.0080 (18)
O80.0321 (10)0.0450 (11)0.0411 (10)0.0061 (10)0.0042 (9)0.0053 (9)
C90.0349 (15)0.0313 (14)0.0451 (17)0.0007 (13)−0.0013 (14)0.0035 (12)
C100.0315 (15)0.0367 (15)0.0430 (16)0.0022 (12)0.0012 (13)−0.0064 (14)
O110.0292 (10)0.0498 (11)0.0486 (11)−0.0048 (10)0.0023 (9)−0.0075 (10)
C120.0324 (14)0.0326 (13)0.0427 (15)0.0006 (13)0.0015 (14)0.0005 (12)
N130.0381 (13)0.0328 (12)0.0408 (13)−0.0013 (12)0.0040 (12)−0.0010 (10)
N140.0380 (13)0.0320 (12)0.0415 (13)−0.0020 (12)0.0021 (12)0.0009 (11)
N150.0456 (14)0.0334 (12)0.0429 (13)−0.0006 (12)0.0012 (11)−0.0013 (11)
C160.0408 (15)0.0332 (14)0.0447 (16)0.0013 (15)0.0017 (14)0.0009 (13)
C170.0420 (16)0.0359 (15)0.0433 (17)0.0005 (14)0.0062 (14)0.0027 (14)
C180.0396 (17)0.0435 (16)0.0486 (17)−0.0038 (15)0.0027 (15)0.0003 (15)
C190.0482 (18)0.0462 (17)0.0552 (19)−0.0032 (18)0.0095 (18)−0.0042 (15)

Geometric parameters (Å, °)

O1—C21.429 (3)C9—C121.481 (4)
O1—C51.421 (4)C9—H911.003
C2—C31.535 (4)C10—O111.419 (3)
C2—C101.524 (4)C10—H1010.992
C2—H210.987O11—H1110.879
C3—O41.409 (3)C12—N131.340 (3)
C3—O81.414 (3)C12—C161.400 (4)
C3—H311.013N13—N141.331 (3)
O4—C51.439 (3)N14—N151.344 (3)
C5—C61.522 (4)N14—C171.456 (4)
C5—C71.501 (4)N15—C161.332 (4)
C6—H610.982C16—H1610.954
C6—H620.972C17—C181.498 (4)
C6—H630.973C17—H1710.977
C7—H730.972C17—H1720.988
C7—H720.968C18—C191.307 (4)
C7—H710.969C18—H1810.959
O8—C91.459 (3)C19—H1920.960
C9—C101.531 (4)C19—H1910.967
C2—O1—C5108.4 (2)C10—C9—C12117.5 (3)
O1—C2—C3103.4 (2)O8—C9—H91109.4
O1—C2—C10109.2 (2)C10—C9—H91107.6
C3—C2—C10104.2 (2)C12—C9—H91111.1
O1—C2—H21113.6C9—C10—C2101.5 (2)
C3—C2—H21115.0C9—C10—O11109.1 (2)
C10—C2—H21110.8C2—C10—O11110.0 (2)
C2—C3—O4105.3 (2)C9—C10—H101111.8
C2—C3—O8106.9 (2)C2—C10—H101109.6
O4—C3—O8111.4 (2)O11—C10—H101114.1
C2—C3—H31110.9C10—O11—H111106.3
O4—C3—H31112.0C9—C12—N13121.1 (2)
O8—C3—H31110.2C9—C12—C16130.5 (3)
C3—O4—C5110.1 (2)N13—C12—C16108.3 (2)
O4—C5—O1104.9 (2)C12—N13—N14103.8 (2)
O4—C5—C6108.8 (2)N13—N14—N15115.4 (2)
O1—C5—C6110.6 (3)N13—N14—C17122.7 (2)
O4—C5—C7109.5 (3)N15—N14—C17121.5 (2)
O1—C5—C7108.8 (2)N14—N15—C16103.2 (2)
C6—C5—C7113.9 (3)C12—C16—N15109.3 (3)
C5—C6—H61108.0C12—C16—H161125.6
C5—C6—H62108.8N15—C16—H161125.1
H61—C6—H62111.7N14—C17—C18111.5 (2)
C5—C6—H63104.7N14—C17—H171107.9
H61—C6—H63110.9C18—C17—H171108.2
H62—C6—H63112.2N14—C17—H172108.2
C5—C7—H73108.6C18—C17—H172109.7
C5—C7—H72109.5H171—C17—H172111.4
H73—C7—H72109.7C17—C18—C19123.9 (3)
C5—C7—H71108.6C17—C18—H181116.0
H73—C7—H71109.2C19—C18—H181120.0
H72—C7—H71111.1C18—C19—H192118.6
C3—O8—C9109.1 (2)C18—C19—H191119.2
O8—C9—C10102.9 (2)H192—C19—H191122.2
O8—C9—C12107.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H161···O1i0.952.443.322 (4)154
C17—H171···O4ii0.982.463.362 (4)154
O11—H111···O8iii0.881.952.822 (4)170

Symmetry codes: (i) −x+2, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2725).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Booth, K. V., Jenkinson, S. F., Fleet, G. W. J., Gullapalli, P., Yoshihara, A., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1385. [PMC free article] [PubMed]
  • Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [PubMed]
  • Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng.97, 89–94. [PubMed]
  • Gullapalli, P., Shiji, T., Rao, D., Yoshihara, A., Morimoto, K., Takata, G., Fleet, G. W. J. & Izumori, K. (2007). Tetrahedron Asymmetry, 18, 1995–2000.
  • Izumori, K. (2002). Naturwissenschaften, 89, 120–124. [PubMed]
  • Izumori, K. (2006). J. Biotechnol.124, 717–722. [PubMed]
  • Jenkinson, S. F., Booth, K. V., Best, D., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2011–o2012. [PMC free article] [PubMed]
  • Jenkinson, S. F., Booth, K. V., Gullapalli, P., Morimoto, K., Izumori, K., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o1705–o1706. [PMC free article] [PubMed]
  • Jenkinson, S. F., Booth, K. V., Yoshihara, A., Morimoto, K., Fleet, G. W. J., Izumori, K. & Watkin, D. J. (2008). Acta Cryst. E64, o1429. [PMC free article] [PubMed]
  • Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON, Chemical Crystallography Laboratory, Oxford, England.
  • Yoshihara, A., Haraguchi, S., Gullapalli, P., Rao, D., Morimoto, K., Takata, G., Jones, N., Jenkinson, S. F., Wormald, M. R., Dwek, R. A., Fleet, G. W. J. & Izumori, K. (2008). Tetrahedron Asymmetry, 19, 739–745.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography