PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1554–m1555.
Published online 2008 November 20. doi:  10.1107/S1600536808037203
PMCID: PMC2959933

catena-Poly[[[aqua­(1,10-phenanthroline-κ2 N,N′)cadmium(II)]-μ-pyridine-2,3-dicarboxyl­ato-κ4 N,O 2:O 3,O 3′] dihydrate]

Abstract

The title complex, {[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O}n, is a one-dimensional coordination polymer, wherein the Cd atom is seven-coordinated by two 1,10-phenanthroline N atoms, one N and three O atoms from two different pyridine-2,3-dicarboxyl­ate ligands, and one water mol­ecule. It is further extended to a two-dimensional layer structure by hydrogen bonds and π–π stacking inter­actions [centroid-centroid distances of 3.560 (2) and 3.666 (2) Å]. There is a C4 water chain in the structure whose repeat unit contains four water mol­ecules with O(...)O distances in the range 2.748 (3)–2.795 (4) Å. One of the two H atoms of each water of hydration is statistically distributed over two positions with equal occupancy.

Related literature

For potential applications of metal–organic coordination polymers, see: Moulton & Zaworotko (2001 [triangle]). For related structures, see: Gutschke et al. (1995 [triangle]); Li et al. (2006 [triangle]); Yu et al. (2004 [triangle]). For the structure of ice, see: Eisenberg & Kauzmann (1969 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1554-scheme1.jpg

Experimental

Crystal data

  • [Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2O
  • M r = 511.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1554-efi1.jpg
  • a = 7.8154 (5) Å
  • b = 10.5854 (7) Å
  • c = 13.0681 (8) Å
  • α = 70.934 (1)°
  • β = 77.940 (1)°
  • γ = 68.698 (1)°
  • V = 946.98 (10) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.20 mm−1
  • T = 293 (2) K
  • 0.40 × 0.16 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.645, T max = 0.840
  • 6124 measured reflections
  • 4194 independent reflections
  • 3979 reflections with I > 2σ(I)
  • R int = 0.012

Refinement

  • R[F 2 > 2σ(F 2)] = 0.019
  • wR(F 2) = 0.048
  • S = 1.07
  • 4194 reflections
  • 272 parameters
  • 8 restraints
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037203/pv2111sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037203/pv2111Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant No. 20671074) and the Foundation of the Education Department of Hubei Province (No. Q20081705).

supplementary crystallographic information

Comment

Metal-organic coordination polymers have been of great interest due to their intriguing potential applications, such as catalysis, magnetism, electronic and chemical separation (Moulton & Zaworotko, 2001). Multidentate N– or O-donor ligands, such as pyridine- or imidazole- (di)carboxylic acids, have drawn extensive attention in the construction of coordination polymers or metal-organic formworks (MOF). For example, pyridine or imidazole dicarboxyic acid ligands, including pyridine-2,6-, 2,5- or 3,4-dicarboxylic and imidazole-3,4-dicarboxylic acids, have been extensively employed in the construction of such metal-organic formworks. Comparing with other pyridine-dicarboxylic acids, pyridine-2,3-dicarboxylic acid (2,3-pydc) has been rarely used as a linkage ligand (Gutschke et al., 1995; Yu et al., 2004; Li et al., 2006). We have synthesized a novel one-dimensional (one-dimensional) coordination polymer based on 2,3-pydc, [Cd(2,3-pydc)(H2O)(phen).2H2O]n (phen = 1,10-phenanthroline), (I), the crystal structure of which is presented in this article.

The title complex is a one-dimensional chain-like coordination polymer. In the structure of the title compound (Fig. 1), the Cd ion is seven-coordinated with two N atoms from phen, one N and three O atoms from two different pyridine-2,3-dicarboxylate and a water molecule. The 2,3-pydc affords four coordination atoms to connect two Cd ions, one as chelating bidentate through the N atom and one O atom of carboxylate in 2-position, the other with two O atoms of carboxylate in 3-position. Thus, complex (I) illustrates a one-dimensional chain structure along a axis, as shown in Fig. 2. Two adjacent chains band together by a series of hydrogen bonds involving water and carbonyl O-atoms (details are given in Table 1), π-π interaction of 1,10-phenanthroline with the shortest distance between the centroids of C11—C14/C18/C19 rings being 3.560 (2) Å and the shortest distance between the centroids of N3/C13—C17 rings are 3.666 (2) Å, thus resulting in a two-dimensional supramolecular structure. The structure also displays a short C6—O2···π(Cg(1)) interaction with a perpendicular distance between O2 and the centroid of Cg(1) being 3.562 (2) Å.

It is also worthwhile to note that there is a C4 water chain in (I), whose repeating unit contains four water molecules with O—O distances 2.750 (4) 2.782 (3), and 2.798 (4) Å (average distance = 2.777 Å), which are all close to the corresponding distance of O—O in the ice Ic (2.75 Å) and Ih (2.759 Å) determined at 143 and 183 K, respectively (Eisenberg & Kauzmann, 1969). Moreover, each water molecule links to the host by the H-bonding interaction between water of hydration and coordination water molecules. Water molecule can participate in four hydrogen bonds in a tetrahedral arrangement with two hydrogen atoms and two lone pairs, but also frequently show 3-coordinate configurations, just as in (I).

Experimental

CdO (0.05 mmol), 1,10-phenanthroline (0.05 mmol) and pyridine 2,3-dicarboxylic acid (0.10 mmol) were added into 1 ml water and stirred for 5 min in air, then transferred to a closed container. After reacting at 353 K for 7 days, the mixture was cooled to room temperature at a rate of 5 K/h. Colorless crystals suitable for X-ray analysis were obtained.

Refinement

All H atoms attached to C atoms of were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.5Ueq(parent atom). Hydrogen atoms of water molecules were located in difference Fourier maps and included in the subsequent refinement using restraints (O—H = 0.85 (1) Å) with Uiso(H) = 1.5Ueq(O). The two hydrogen atoms were statistically distributed over two positions each (H2W2 and H3W2, H2W3 and H3W3) with occupation factors of 0.50.

Figures

Fig. 1.
The coordination environment of Cd in (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level; hydrogen atoms were omitted for clarity. Symmetry codes: a = x - 1, y, z; b = x + 1, y, z.
Fig. 2.
Unit cell packing of (I) showing (one-dimensional) chain-like structure along the a-axis; hydrogen bonds have been shown by dotted lines.

Crystal data

[Cd(C7H3NO4)(C12H8N2)(H2O)]·2H2OZ = 2
Mr = 511.76F000 = 512
Triclinic, P1Dx = 1.795 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.8154 (5) ÅCell parameters from 4951 reflections
b = 10.5854 (7) Åθ = 2.3–29.6º
c = 13.0681 (8) ŵ = 1.20 mm1
α = 70.934 (1)ºT = 293 (2) K
β = 77.940 (1)ºRod-like, colorless
γ = 68.698 (1)º0.40 × 0.16 × 0.15 mm
V = 946.98 (10) Å3

Data collection

Bruker SMART CCD area-detector diffractometer4194 independent reflections
Radiation source: fine-focus sealed tube3979 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.012
T = 293(2) Kθmax = 27.5º
[var phi] and ω scansθmin = 2.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.645, Tmax = 0.840k = −13→13
6124 measured reflectionsl = −16→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.048  w = 1/[σ2(Fo2) + (0.0181P)2 + 0.4298P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4194 reflectionsΔρmax = 0.28 e Å3
272 parametersΔρmin = −0.26 e Å3
8 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0051 (5)

Special details

Experimental. Elemental analysis. Cacld. for C19H17CdN3O7: C, 44.55; H, 3.35; N, 8.21; Found: C, 44.05; H, 3.44; N, 8.53.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.351199 (16)0.150242 (13)0.791379 (10)0.02558 (5)
O10.03910 (18)0.25289 (13)0.83701 (12)0.0341 (3)
O1W0.3973 (2)0.23034 (15)0.92673 (11)0.0386 (3)
H1W10.37650.17500.98970.046*
H2W10.50910.21670.91780.046*
O2−0.23661 (17)0.22382 (14)0.87797 (12)0.0347 (3)
O3−0.39081 (19)−0.04132 (16)0.87081 (13)0.0444 (4)
O4−0.3121 (2)0.10668 (15)0.72263 (12)0.0431 (3)
N10.2029 (2)−0.02383 (15)0.85619 (12)0.0271 (3)
N20.2943 (2)0.15794 (18)0.61441 (14)0.0370 (4)
N30.3212 (2)0.37684 (16)0.67259 (13)0.0325 (3)
C10.0212 (2)0.03040 (17)0.84658 (13)0.0228 (3)
C2−0.0784 (2)−0.04976 (17)0.83637 (13)0.0242 (3)
C30.0120 (3)−0.19266 (19)0.84791 (15)0.0311 (4)
H3−0.0519−0.25000.84480.037*
C40.1965 (3)−0.24943 (19)0.86391 (16)0.0336 (4)
H40.2575−0.34550.87400.040*
C50.2886 (3)−0.16083 (19)0.86460 (16)0.0319 (4)
H50.4147−0.19760.87110.038*
C6−0.0676 (2)0.18204 (17)0.85371 (13)0.0240 (3)
C7−0.2739 (2)0.01160 (19)0.80796 (15)0.0286 (4)
C80.2799 (4)0.0538 (3)0.5853 (2)0.0539 (6)
H80.2953−0.03330.63670.065*
C90.2429 (4)0.0683 (4)0.4814 (2)0.0711 (8)
H90.2360−0.00790.46380.085*
C100.2171 (4)0.1952 (4)0.4069 (2)0.0715 (9)
H100.19220.20670.33730.086*
C110.2277 (3)0.3097 (3)0.43373 (18)0.0540 (6)
C120.2682 (3)0.2858 (2)0.54009 (15)0.0371 (4)
C130.2814 (3)0.4003 (2)0.57072 (15)0.0353 (4)
C140.2530 (3)0.5338 (2)0.49409 (18)0.0483 (6)
C150.2690 (4)0.6423 (2)0.5264 (2)0.0581 (7)
H150.25270.73130.47760.070*
C160.3084 (4)0.6176 (2)0.6286 (2)0.0572 (7)
H160.31870.68920.65090.069*
C170.3331 (3)0.4828 (2)0.70002 (19)0.0446 (5)
H170.35920.46670.77030.054*
C180.1968 (4)0.4480 (4)0.3597 (2)0.0708 (9)
H180.16690.46430.29030.085*
C190.2102 (4)0.5535 (4)0.3882 (2)0.0674 (8)
H190.19120.64180.33800.081*
O2W0.3981 (2)0.49790 (17)0.09955 (14)0.0559 (4)
H2W20.30590.48450.08420.067*0.50
H1W20.35890.57810.10800.067*
H3W20.45620.51710.03760.067*0.50
O3W0.0437 (3)0.49496 (17)0.09995 (15)0.0593 (5)
H1W3−0.00280.57360.11190.071*
H2W3−0.00310.49960.04650.071*0.50
H3W30.15990.48140.08330.071*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02151 (8)0.02702 (8)0.02817 (8)−0.00974 (5)−0.00549 (5)−0.00348 (5)
O10.0248 (7)0.0268 (6)0.0536 (8)−0.0105 (5)−0.0005 (6)−0.0146 (6)
O1W0.0330 (7)0.0508 (8)0.0362 (7)−0.0193 (6)−0.0036 (6)−0.0105 (6)
O20.0216 (7)0.0326 (7)0.0505 (8)−0.0084 (5)0.0026 (6)−0.0164 (6)
O30.0263 (7)0.0505 (9)0.0554 (9)−0.0196 (7)−0.0050 (6)−0.0044 (7)
O40.0384 (8)0.0416 (8)0.0443 (8)−0.0102 (7)−0.0183 (6)0.0002 (6)
N10.0205 (7)0.0260 (7)0.0348 (8)−0.0076 (6)−0.0066 (6)−0.0058 (6)
N20.0356 (9)0.0441 (9)0.0339 (9)−0.0136 (7)−0.0041 (7)−0.0127 (7)
N30.0307 (8)0.0316 (8)0.0301 (8)−0.0100 (7)0.0001 (6)−0.0041 (6)
C10.0217 (8)0.0235 (8)0.0225 (8)−0.0084 (6)−0.0024 (6)−0.0037 (6)
C20.0229 (8)0.0242 (8)0.0252 (8)−0.0087 (7)−0.0041 (6)−0.0040 (6)
C30.0324 (10)0.0255 (8)0.0387 (10)−0.0129 (7)−0.0085 (8)−0.0057 (7)
C40.0336 (10)0.0225 (8)0.0405 (10)−0.0038 (7)−0.0093 (8)−0.0058 (7)
C50.0233 (9)0.0284 (9)0.0404 (10)−0.0038 (7)−0.0097 (7)−0.0057 (8)
C60.0240 (8)0.0245 (8)0.0243 (8)−0.0090 (7)−0.0039 (6)−0.0053 (6)
C70.0241 (9)0.0285 (9)0.0380 (10)−0.0088 (7)−0.0069 (7)−0.0126 (7)
C80.0603 (16)0.0619 (15)0.0513 (14)−0.0235 (13)−0.0057 (11)−0.0264 (12)
C90.078 (2)0.097 (2)0.0637 (18)−0.0357 (18)−0.0071 (15)−0.0462 (18)
C100.0657 (18)0.123 (3)0.0417 (14)−0.0371 (18)−0.0068 (13)−0.0351 (17)
C110.0397 (13)0.0903 (19)0.0300 (11)−0.0203 (12)−0.0050 (9)−0.0136 (12)
C120.0250 (9)0.0547 (12)0.0268 (9)−0.0103 (9)−0.0025 (7)−0.0077 (8)
C130.0230 (9)0.0405 (10)0.0294 (9)−0.0057 (8)0.0011 (7)−0.0003 (8)
C140.0336 (11)0.0488 (13)0.0380 (11)−0.0065 (10)0.0012 (9)0.0092 (9)
C150.0528 (15)0.0359 (12)0.0580 (15)−0.0093 (11)0.0093 (12)0.0082 (10)
C160.0682 (17)0.0346 (11)0.0593 (15)−0.0195 (11)0.0141 (13)−0.0098 (11)
C170.0519 (14)0.0382 (11)0.0418 (12)−0.0191 (10)0.0054 (10)−0.0093 (9)
C180.0593 (17)0.111 (3)0.0266 (11)−0.0262 (17)−0.0137 (11)0.0059 (14)
C190.0535 (16)0.080 (2)0.0391 (13)−0.0158 (14)−0.0086 (11)0.0176 (13)
O2W0.0545 (10)0.0439 (9)0.0604 (11)−0.0030 (8)−0.0024 (8)−0.0191 (8)
O3W0.0714 (12)0.0408 (9)0.0740 (12)−0.0219 (8)−0.0031 (10)−0.0247 (8)

Geometric parameters (Å, °)

Cd1—O12.3185 (13)C4—H40.9300
Cd1—O1W2.3336 (14)C5—H50.9300
Cd1—N32.3513 (15)C8—C91.395 (4)
Cd1—N12.3616 (14)C8—H80.9300
Cd1—O3i2.4049 (15)C9—C101.351 (5)
Cd1—N22.4151 (16)C9—H90.9300
Cd1—O4i2.5189 (16)C10—C111.400 (4)
O1—C61.256 (2)C10—H100.9300
O1W—H1W10.8630C11—C121.411 (3)
O1W—H2W10.8216C11—C181.433 (4)
O2—C61.238 (2)C12—C131.437 (3)
O3—C71.257 (2)C13—C141.410 (3)
O3—Cd1ii2.4049 (15)C14—C151.399 (4)
O4—C71.238 (2)C14—C191.422 (4)
O4—Cd1ii2.5189 (16)C15—C161.353 (4)
N1—C51.336 (2)C15—H150.9300
N1—C11.341 (2)C16—C171.396 (3)
N2—C81.324 (3)C16—H160.9300
N2—C121.356 (3)C17—H170.9300
N3—C171.322 (3)C18—C191.331 (5)
N3—C131.353 (3)C18—H180.9300
C1—C21.393 (2)C19—H190.9300
C1—C61.526 (2)O2W—H2W20.8556
C2—C31.389 (2)O2W—H1W20.8277
C2—C71.501 (2)O2W—H3W20.8415
C3—C41.377 (3)O3W—H1W30.8306
C3—H30.9300O3W—H2W30.8344
C4—C51.377 (3)O3W—H3W30.8577
O1—Cd1—O1W85.50 (5)C4—C5—H5118.9
O1—Cd1—N382.48 (5)O2—C6—O1125.52 (16)
O1W—Cd1—N387.94 (5)O2—C6—C1117.87 (15)
O1—Cd1—N170.02 (5)O1—C6—C1116.58 (15)
O1W—Cd1—N1114.38 (5)O4—C7—O3122.84 (17)
N3—Cd1—N1142.12 (5)O4—C7—C2119.52 (17)
O1—Cd1—O3i139.09 (5)O3—C7—C2117.56 (16)
O1W—Cd1—O3i78.30 (5)N2—C8—C9123.3 (3)
N3—Cd1—O3i133.35 (5)N2—C8—H8118.4
N1—Cd1—O3i82.89 (5)C9—C8—H8118.4
O1—Cd1—N291.39 (5)C10—C9—C8118.7 (3)
O1W—Cd1—N2158.39 (6)C10—C9—H9120.6
N3—Cd1—N270.46 (6)C8—C9—H9120.6
N1—Cd1—N284.31 (6)C9—C10—C11120.5 (2)
O3i—Cd1—N2116.44 (6)C9—C10—H10119.8
O1—Cd1—O4i164.61 (5)C11—C10—H10119.8
O1W—Cd1—O4i88.95 (5)C10—C11—C12117.3 (2)
N3—Cd1—O4i82.98 (5)C10—C11—C18123.3 (2)
N1—Cd1—O4i125.23 (5)C12—C11—C18119.3 (3)
O3i—Cd1—O4i52.80 (5)N2—C12—C11121.9 (2)
N2—Cd1—O4i88.50 (5)N2—C12—C13119.02 (17)
C6—O1—Cd1118.77 (11)C11—C12—C13119.1 (2)
Cd1—O1W—H1W1109.3N3—C13—C14121.7 (2)
Cd1—O1W—H2W1103.1N3—C13—C12118.94 (17)
H1W1—O1W—H2W1105.8C14—C13—C12119.32 (19)
C7—O3—Cd1ii93.36 (11)C15—C14—C13117.7 (2)
C7—O4—Cd1ii88.54 (12)C15—C14—C19122.6 (2)
C5—N1—C1119.41 (15)C13—C14—C19119.7 (3)
C5—N1—Cd1124.26 (12)C16—C15—C14119.9 (2)
C1—N1—Cd1112.35 (11)C16—C15—H15120.0
C8—N2—C12118.31 (19)C14—C15—H15120.0
C8—N2—Cd1127.04 (16)C15—C16—C17118.9 (2)
C12—N2—Cd1114.59 (13)C15—C16—H16120.5
C17—N3—C13118.51 (18)C17—C16—H16120.5
C17—N3—Cd1124.53 (14)N3—C17—C16123.2 (2)
C13—N3—Cd1116.90 (13)N3—C17—H17118.4
N1—C1—C2121.67 (15)C16—C17—H17118.4
N1—C1—C6115.02 (14)C19—C18—C11121.4 (2)
C2—C1—C6123.23 (15)C19—C18—H18119.3
C3—C2—C1117.80 (16)C11—C18—H18119.3
C3—C2—C7118.66 (15)C18—C19—C14121.2 (2)
C1—C2—C7123.46 (15)C18—C19—H19119.4
C4—C3—C2120.00 (17)C14—C19—H19119.4
C4—C3—H3120.0H2W2—O2W—H1W2105.8
C2—C3—H3120.0H2W2—O2W—H3W2101.4
C3—C4—C5118.55 (16)H1W2—O2W—H3W297.7
C3—C4—H4120.7H1W3—O3W—H2W3106.6
C5—C4—H4120.7H1W3—O3W—H3W3107.2
N1—C5—C4122.22 (17)H2W3—O3W—H3W3109.5
N1—C5—H5118.9
O1W—Cd1—O1—C6−131.03 (14)Cd1—N1—C5—C4−155.90 (15)
N3—Cd1—O1—C6140.47 (14)C3—C4—C5—N13.7 (3)
N1—Cd1—O1—C6−13.05 (13)Cd1—O1—C6—O2−179.59 (14)
O3i—Cd1—O1—C6−64.70 (16)Cd1—O1—C6—C12.4 (2)
N2—Cd1—O1—C670.38 (14)N1—C1—C6—O2−158.83 (16)
O4i—Cd1—O1—C6159.78 (16)C2—C1—C6—O218.1 (2)
O1—Cd1—N1—C5179.92 (16)N1—C1—C6—O119.4 (2)
O1W—Cd1—N1—C5−104.93 (15)C2—C1—C6—O1−163.76 (16)
N3—Cd1—N1—C5133.86 (14)Cd1ii—O4—C7—O315.87 (19)
O3i—Cd1—N1—C5−31.25 (15)Cd1ii—O4—C7—C2−167.34 (15)
N2—Cd1—N1—C586.36 (15)Cd1ii—O3—C7—O4−16.7 (2)
O4i—Cd1—N1—C52.24 (17)Cd1ii—O3—C7—C2166.48 (13)
O1—Cd1—N1—C122.61 (11)C3—C2—C7—O4−119.5 (2)
O1W—Cd1—N1—C197.76 (12)C1—C2—C7—O457.2 (3)
N3—Cd1—N1—C1−23.44 (17)C3—C2—C7—O357.5 (2)
O3i—Cd1—N1—C1171.45 (13)C1—C2—C7—O3−125.86 (19)
N2—Cd1—N1—C1−70.95 (12)C12—N2—C8—C91.3 (4)
O4i—Cd1—N1—C1−155.06 (11)Cd1—N2—C8—C9178.6 (2)
O1—Cd1—N2—C8−98.04 (19)N2—C8—C9—C10−1.2 (4)
O1W—Cd1—N2—C8−179.31 (17)C8—C9—C10—C110.0 (5)
N3—Cd1—N2—C8−179.6 (2)C9—C10—C11—C120.8 (4)
N1—Cd1—N2—C8−28.28 (19)C9—C10—C11—C18−178.2 (3)
O3i—Cd1—N2—C850.9 (2)C8—N2—C12—C11−0.4 (3)
O4i—Cd1—N2—C897.4 (2)Cd1—N2—C12—C11−178.00 (16)
O1—Cd1—N2—C1279.33 (14)C8—N2—C12—C13179.3 (2)
O1W—Cd1—N2—C12−1.9 (2)Cd1—N2—C12—C131.7 (2)
N3—Cd1—N2—C12−2.19 (13)C10—C11—C12—N2−0.6 (3)
N1—Cd1—N2—C12149.10 (14)C18—C11—C12—N2178.4 (2)
O3i—Cd1—N2—C12−131.76 (13)C10—C11—C12—C13179.6 (2)
O4i—Cd1—N2—C12−85.28 (14)C18—C11—C12—C13−1.3 (3)
O1—Cd1—N3—C1785.52 (17)C17—N3—C13—C140.1 (3)
O1W—Cd1—N3—C17−0.21 (17)Cd1—N3—C13—C14177.42 (15)
N1—Cd1—N3—C17128.57 (16)C17—N3—C13—C12179.96 (18)
O3i—Cd1—N3—C17−71.96 (19)Cd1—N3—C13—C12−2.7 (2)
N2—Cd1—N3—C17179.69 (18)N2—C12—C13—N30.6 (3)
O4i—Cd1—N3—C17−89.41 (17)C11—C12—C13—N3−179.66 (18)
O1—Cd1—N3—C13−91.62 (13)N2—C12—C13—C14−179.52 (18)
O1W—Cd1—N3—C13−177.35 (13)C11—C12—C13—C140.2 (3)
N1—Cd1—N3—C13−48.57 (17)N3—C13—C14—C150.6 (3)
O3i—Cd1—N3—C13110.90 (14)C12—C13—C14—C15−179.3 (2)
N2—Cd1—N3—C132.56 (13)N3—C13—C14—C19−179.6 (2)
O4i—Cd1—N3—C1393.46 (13)C12—C13—C14—C190.6 (3)
C5—N1—C1—C2−5.2 (3)C13—C14—C15—C16−0.8 (4)
Cd1—N1—C1—C2153.32 (13)C19—C14—C15—C16179.4 (2)
C5—N1—C1—C6171.73 (16)C14—C15—C16—C170.3 (4)
Cd1—N1—C1—C6−29.74 (17)C13—N3—C17—C16−0.6 (3)
N1—C1—C2—C36.6 (3)Cd1—N3—C17—C16−177.74 (18)
C6—C1—C2—C3−170.04 (16)C15—C16—C17—N30.5 (4)
N1—C1—C2—C7−170.04 (16)C10—C11—C18—C19−179.3 (3)
C6—C1—C2—C713.3 (3)C12—C11—C18—C191.7 (4)
C1—C2—C3—C4−2.9 (3)C11—C18—C19—C14−1.0 (4)
C7—C2—C3—C4173.96 (17)C15—C14—C19—C18179.6 (3)
C2—C3—C4—C5−2.0 (3)C13—C14—C19—C18−0.2 (4)
C1—N1—C5—C4−0.1 (3)

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3W—H3W3···O2W0.861.992.780 (3)152
O3W—H2W3···O3Wiii0.831.982.795 (4)164
O3W—H1W3···O1iv0.832.062.860 (2)161
O2W—H1W2···O2iv0.832.022.840 (2)173
O2W—H3W2···O2Wv0.841.932.748 (3)163
O2W—H2W2···O3W0.861.982.780 (3)155
O1W—H2W1···O2i0.821.972.7784 (19)168
O1W—H1W1···O3vi0.861.902.751 (2)167

Symmetry codes: (iii) −x, −y+1, −z; (iv) −x, −y+1, −z+1; (v) −x+1, −y+1, −z; (i) x+1, y, z; (vi) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2111).

References

  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Eisenberg, D. & Kauzmann, W. (1969). The Structure and Properties of Water Oxford University Press.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gutschke, S. O. H., Slawin, A. M. Z. & Wood, P. T. (1995). J. Chem. Soc. Chem. Commun. pp. 2197–2198.
  • Li, M., Xiang, J. F., Yuan, L. J., Wu, S. M., Chen, S. P. & Sun, J. T. (2006). Cryst. Growth Des.9, 2036–2040.
  • Moulton, B. & Zaworotko, M. (2001). Chem. Rev 101, 1629–1658. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yu, Z. T., Liao, Z. L., Jiang, Y. S., Li, G. H., Li, G. D. & Chen, J. S. (2004). Chem. Commun. pp. 1814–1815. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography