PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2350.
Published online 2008 November 13. doi:  10.1107/S160053680803715X
PMCID: PMC2959929

2-Amino-4-tert-butyl-5-(4-chloro­benz­yl)thia­zole

Abstract

In the title compound, C14H17ClN2S, the dihedral angle between the planes of the thia­zole and chloro­phenyl rings is 88.86 (3)°. In the crystal, inversion dimers occur, linked by pairs of N—H(...)N hydrogen bonds.

Related literature

For background on 2-amino-4-aryl­thia­zoles and their wide-ranging anti­fungal activities, see: Hu et al. (2007a [triangle]); Marcantonio et al. (2002 [triangle]). For related structures, see: Cao et al. (2007 [triangle]); He et al. (2006 [triangle]); Hu et al. (2007b [triangle]); Xu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2350-scheme1.jpg

Experimental

Crystal data

  • C14H17ClN2S
  • M r = 280.81
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2350-efi1.jpg
  • a = 21.1775 (13) Å
  • b = 5.8544 (4) Å
  • c = 22.8193 (14) Å
  • β = 98.5480 (10)°
  • V = 2797.7 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.41 mm−1
  • T = 173 (2) K
  • 0.48 × 0.29 × 0.17 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.829, T max = 0.934
  • 6230 measured reflections
  • 2705 independent reflections
  • 2187 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.120
  • S = 1.06
  • 2705 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803715X/sg2282sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803715X/sg2282Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The work was funded by the National Key Technology R&D Program, China (NO: 2006 BAE01A01–4).

supplementary crystallographic information

Comment

2-Amino-4-arylthiazoles are an important class of heterocyclic compounds in the field of organic pharmaceutial chenistry (Hu et al., 2007a, Marcantonio et al.,2002). Because of their wide-ranging antifungal activities, The structure of 2-amino-4-arylthiazoles were reported before (Cao,et al.,2007, He et al.,2006, Hu et al.,2007b, Xu, et al.,2007). Herein we report the synthesis and crystal structure of 2-amino-4-tert-butyl-5-(4- chlorobenzyl)thiazole(I). The dihedral angle between the planes of thiazole and the chlorophenyl ring is 88.86 °. The molecules are linked by N—H···N hydrogen bonds.

Experimental

0.01 mol of 1-(4-Chlorophenyl)-4,4-dimethylpentan-3-one was dissolved in 100 ml e thanol and the mixture was stirred and heated to reflex. 0.012 mol of cupric chloride was added by dropwise. The reaction was monitored by TLC, after it finished, filtered the mixture and concentrated in vacuo. The residue was taken up in dichloromethane, washed with 10% hydrochloric acid, then washed with water until the solution was neutral, dried and concentrated in vacuo to give 4-chloro-1-(4-chlorophenyl)-4,4-dimethylpentan -3-one, yield 87%. Then a solution with 0.005 mol of thiurea and 0.005 mol of 4-chloro-1-(4-chlorophenyl)-4,4-dimethylpentan -3-one in 50 ml of ethanol was refluxed for 10 h. After finishing the reaction, added 10 ml ammonia and continus to stir the sulution 2 h. Then the solution was cooled and the precipitate formed was filtered out, dried, giving white crystals of title compound,yield 73.8%. The crystals for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

Methyl H atoms were placed in calculated positions, with C—H = 0.96 Å, and torsion angles were refined, with Uiso(H) = 1.5Ueq(C). Other H atoms were placed in geometrically idealized positions and refined as riding model, with N—H distance of 0.86 Å, C—H distances of 0.98Å (C3—H3), 0.93Å (aromatic H atoms) and 0.97Å (methylene H atoms). The constraint Uiso(H) = 1.2Ueq(carrier) was applied.

Figures

Fig. 1.
Molecular structure showing 30% probability displacement ellipsoids.H atoms are drawn as spheres of arbitrary radii. Only the major occupied sites of the disordered tert-butyl group are showen.
Fig. 2.
Packing diagram showing the N—H···N hydrogen bonds.

Crystal data

C14H17ClN2SF000 = 1184
Mr = 280.81Dx = 1.333 Mg m3
Monoclinic, C2/cMelting point: 390 K
Hall symbol: -C 2ycMo Kα radiation λ = 0.71073 Å
a = 21.1775 (13) ÅCell parameters from 3521 reflections
b = 5.8544 (4) Åθ = 2.8–26.9º
c = 22.8193 (14) ŵ = 0.41 mm1
β = 98.5480 (10)ºT = 173 (2) K
V = 2797.7 (3) Å3Block, colourless
Z = 80.48 × 0.29 × 0.17 mm

Data collection

Bruker SMART 1000 CCD diffractometer2705 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.022
T = 173(2) Kθmax = 26.0º
ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 2004)h = −26→23
Tmin = 0.829, Tmax = 0.934k = −5→7
6230 measured reflectionsl = −19→28

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.120  w = 1/[σ2(Fo2) + (0.0686P)2 + 2.6543P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2705 reflectionsΔρmax = 0.32 e Å3
166 parametersΔρmin = −0.32 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. 1H NMR (CDCl3, 400 MHz) (ppm):1.32(s,9H,3CH3),4.1(s,2H,CH2), 4.8(bs,2H,NH2),7.12(d,J=8.0 Hz,2H,2,6-C6H4Cl), 7.26(d,J=8.0Hz,2H,3,5-C6H4Cl)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.13949 (3)0.57508 (12)0.24064 (3)0.0437 (2)
S10.33404 (2)0.74487 (9)−0.00369 (2)0.02787 (18)
C10.40616 (9)0.8911 (4)0.00413 (9)0.0235 (4)
C20.42658 (10)0.6258 (3)0.07470 (8)0.0228 (4)
C30.36579 (10)0.5622 (3)0.05422 (9)0.0244 (4)
C40.32309 (10)0.3710 (4)0.06838 (9)0.0284 (5)
H4A0.35040.24160.08450.034*
H4B0.29750.31880.03090.034*
C50.27747 (9)0.4274 (3)0.11205 (9)0.0229 (4)
C60.27927 (11)0.6335 (4)0.14241 (9)0.0301 (5)
H60.31010.74540.13610.036*
C70.23707 (11)0.6786 (4)0.18159 (10)0.0309 (5)
H70.23890.82020.20210.037*
C80.19240 (10)0.5176 (4)0.19071 (9)0.0287 (5)
C90.18919 (10)0.3095 (4)0.16165 (9)0.0296 (5)
H90.15870.19780.16870.036*
C100.23148 (10)0.2676 (4)0.12204 (9)0.0267 (5)
H100.22910.12660.10120.032*
C110.47436 (10)0.5254 (4)0.12457 (9)0.0260 (5)
C120.50271 (12)0.7208 (4)0.16519 (10)0.0359 (6)
H12A0.46870.79390.18330.054*
H12B0.52240.83360.14180.054*
H12C0.53510.65940.19640.054*
C130.52788 (11)0.4074 (4)0.09748 (10)0.0358 (6)
H13A0.56090.35420.12920.054*
H13B0.54670.51600.07230.054*
H13C0.51030.27680.07360.054*
C140.44542 (13)0.3499 (5)0.16253 (11)0.0425 (6)
H14A0.40770.41550.17630.064*
H14B0.47700.30870.19680.064*
H14C0.43300.21310.13880.064*
N10.44938 (8)0.8119 (3)0.04551 (7)0.0228 (4)
N20.41428 (9)1.0743 (3)−0.03037 (8)0.0289 (4)
H2A0.45091.1483−0.02540.035*
H2B0.38301.1191−0.05770.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0357 (3)0.0626 (4)0.0359 (3)0.0072 (3)0.0153 (3)−0.0044 (3)
S10.0206 (3)0.0356 (3)0.0269 (3)−0.0032 (2)0.0018 (2)0.0018 (2)
C10.0205 (10)0.0295 (11)0.0213 (10)−0.0018 (8)0.0060 (8)−0.0023 (8)
C20.0255 (11)0.0245 (10)0.0196 (9)−0.0025 (8)0.0076 (8)−0.0010 (8)
C30.0265 (11)0.0249 (11)0.0227 (10)−0.0026 (8)0.0062 (8)−0.0009 (8)
C40.0279 (11)0.0287 (11)0.0297 (11)−0.0075 (9)0.0077 (9)−0.0046 (9)
C50.0219 (10)0.0246 (10)0.0217 (10)−0.0012 (8)0.0016 (8)0.0023 (8)
C60.0337 (12)0.0275 (11)0.0293 (11)−0.0057 (9)0.0059 (9)−0.0021 (9)
C70.0348 (12)0.0293 (11)0.0280 (11)0.0008 (10)0.0033 (9)−0.0067 (9)
C80.0246 (11)0.0404 (12)0.0215 (10)0.0054 (9)0.0044 (8)0.0026 (9)
C90.0246 (11)0.0363 (12)0.0280 (11)−0.0025 (9)0.0045 (9)0.0040 (9)
C100.0268 (11)0.0253 (11)0.0278 (11)−0.0018 (9)0.0036 (9)0.0011 (8)
C110.0283 (11)0.0275 (11)0.0223 (10)0.0000 (9)0.0043 (8)0.0049 (8)
C120.0456 (15)0.0374 (13)0.0220 (11)0.0007 (11)−0.0043 (10)−0.0004 (9)
C130.0376 (13)0.0377 (13)0.0319 (12)0.0090 (10)0.0049 (10)0.0052 (10)
C140.0419 (14)0.0481 (15)0.0377 (13)−0.0053 (12)0.0064 (11)0.0190 (12)
N10.0222 (9)0.0263 (9)0.0204 (8)−0.0008 (7)0.0044 (7)0.0030 (7)
N20.0248 (9)0.0323 (10)0.0285 (9)−0.0004 (8)0.0005 (7)0.0105 (8)

Geometric parameters (Å, °)

Cl1—C81.746 (2)C8—C91.383 (3)
S1—C11.737 (2)C9—C101.386 (3)
S1—C31.754 (2)C9—H90.9500
C1—N11.299 (3)C10—H100.9500
C1—N21.356 (3)C11—C141.530 (3)
C2—C31.355 (3)C11—C131.534 (3)
C2—N11.400 (3)C11—C121.537 (3)
C2—C111.524 (3)C12—H12A0.9800
C3—C41.504 (3)C12—H12B0.9800
C4—C51.524 (3)C12—H12C0.9800
C4—H4A0.9900C13—H13A0.9800
C4—H4B0.9900C13—H13B0.9800
C5—C61.389 (3)C13—H13C0.9800
C5—C101.393 (3)C14—H14A0.9800
C6—C71.380 (3)C14—H14B0.9800
C6—H60.9500C14—H14C0.9800
C7—C81.373 (3)N2—H2A0.8800
C7—H70.9500N2—H2B0.8800
C1—S1—C389.44 (10)C9—C10—C5121.5 (2)
N1—C1—N2124.57 (19)C9—C10—H10119.2
N1—C1—S1114.38 (15)C5—C10—H10119.2
N2—C1—S1121.04 (15)C2—C11—C14113.86 (19)
C3—C2—N1115.28 (18)C2—C11—C13108.74 (17)
C3—C2—C11130.02 (19)C14—C11—C13107.96 (19)
N1—C2—C11114.70 (17)C2—C11—C12108.64 (17)
C2—C3—C4134.5 (2)C14—C11—C12108.16 (18)
C2—C3—S1109.30 (15)C13—C11—C12109.42 (19)
C4—C3—S1116.10 (15)C11—C12—H12A109.5
C3—C4—C5116.06 (17)C11—C12—H12B109.5
C3—C4—H4A108.3H12A—C12—H12B109.5
C5—C4—H4A108.3C11—C12—H12C109.5
C3—C4—H4B108.3H12A—C12—H12C109.5
C5—C4—H4B108.3H12B—C12—H12C109.5
H4A—C4—H4B107.4C11—C13—H13A109.5
C6—C5—C10118.02 (19)C11—C13—H13B109.5
C6—C5—C4122.77 (18)H13A—C13—H13B109.5
C10—C5—C4119.21 (18)C11—C13—H13C109.5
C7—C6—C5121.1 (2)H13A—C13—H13C109.5
C7—C6—H6119.4H13B—C13—H13C109.5
C5—C6—H6119.4C11—C14—H14A109.5
C8—C7—C6119.6 (2)C11—C14—H14B109.5
C8—C7—H7120.2H14A—C14—H14B109.5
C6—C7—H7120.2C11—C14—H14C109.5
C7—C8—C9121.2 (2)H14A—C14—H14C109.5
C7—C8—Cl1119.34 (17)H14B—C14—H14C109.5
C9—C8—Cl1119.48 (17)C1—N1—C2111.59 (17)
C8—C9—C10118.6 (2)C1—N2—H2A120.0
C8—C9—H9120.7C1—N2—H2B120.0
C10—C9—H9120.7H2A—N2—H2B120.0
C3—S1—C1—N10.05 (16)C6—C7—C8—Cl1179.63 (17)
C3—S1—C1—N2−178.88 (18)C7—C8—C9—C10−1.1 (3)
N1—C2—C3—C4175.9 (2)Cl1—C8—C9—C10179.78 (16)
C11—C2—C3—C4−3.8 (4)C8—C9—C10—C51.4 (3)
N1—C2—C3—S1−1.0 (2)C6—C5—C10—C9−1.0 (3)
C11—C2—C3—S1179.30 (18)C4—C5—C10—C9179.46 (19)
C1—S1—C3—C20.54 (16)C3—C2—C11—C14−10.1 (3)
C1—S1—C3—C4−177.02 (16)N1—C2—C11—C14170.24 (19)
C2—C3—C4—C596.2 (3)C3—C2—C11—C13110.3 (2)
S1—C3—C4—C5−87.0 (2)N1—C2—C11—C13−69.4 (2)
C3—C4—C5—C6−6.9 (3)C3—C2—C11—C12−130.7 (2)
C3—C4—C5—C10172.63 (18)N1—C2—C11—C1249.7 (2)
C10—C5—C6—C70.4 (3)N2—C1—N1—C2178.26 (18)
C4—C5—C6—C7179.9 (2)S1—C1—N1—C2−0.6 (2)
C5—C6—C7—C8−0.2 (3)C3—C2—N1—C11.1 (3)
C6—C7—C8—C90.5 (3)C11—C2—N1—C1−179.18 (17)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.243.032 (2)150

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2282).

References

  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, G., Hu, A.-X., Xu, J.-J. & Xia, L. (2007). Acta Cryst. E63, o2534.
  • He, D.-H., Cao, G. & Hu, A.-X. (2006). Acta Cryst. E62, o5637–o5638.
  • Hu, A.-X., Cao, G., Xu, J.-J., Xia, L. & He, D.-H. (2007a). J. Hunan Univ. (Nat. Sci.), 10, 78–80.
  • Hu, A.-X., Zhang, J.-Y., Cao, G., Xu, J.-J. & Xia, L. (2007b). Acta Cryst. E63, o2533.
  • Marcantonio, K. M., Frey, L. F., Murry, J. A. & Chen, C. Y. (2002). Tetrahedron Lett.43, 8845–8848.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, J.-J., Hu, A.-X. & Cao, G. (2007). Acta Cryst. E63, o533–o534.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography