PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2490–o2491.
Published online 2008 November 29. doi:  10.1107/S160053680803938X
PMCID: PMC2959925

5,7-Bis(benz­yloxy)-2-phenyl-4H-chromen-4-one

Abstract

In the title compound, C29H22O4, the chromene ring is almost planar with a small puckering [0.143 (2) Å]. The crystal structure is stabilized by C—H(...)O and C—H(...)π inter­actions. Edge-to-face (centroid–centroid distances of 3.894 and 3.673 Å) and face-to-face (centroid–centroid distance of 3.460 Å) π–π-ring electron inter­actions are also observed.

Related literature

For the biological and pharmacological properties of benzopyrans and their derivatives, see: Brooks (1998 [triangle]); Hatakeyama et al. (1988 [triangle]); Hyana & Saimoto (1987 [triangle]); Tang et al. (2007 [triangle]). For the importance of 4H-chromenes, see Liu et al. (2007 [triangle]); Wang, Fang et al. (2003 [triangle]); Wang, Zhang et al. (2003 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]); Desiraju (1989 [triangle]); Desiraju & Steiner (1999 [triangle]); Etter (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2490-scheme1.jpg

Experimental

Crystal data

  • C29H22O4
  • M r = 434.47
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2490-efi1.jpg
  • a = 9.496 (3) Å
  • b = 11.572 (3) Å
  • c = 11.767 (3) Å
  • α = 66.564 (4)°
  • β = 79.668 (5)°
  • γ = 73.836 (5)°
  • V = 1136.1 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.45 × 0.33 × 0.23 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.963, T max = 0.981
  • 13435 measured reflections
  • 5302 independent reflections
  • 3534 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.155
  • S = 1.05
  • 5302 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803938X/fb2125sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803938X/fb2125Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

AN thanks Dr Naresh Kumar and Dr G. Vengatachalam, School of Chemistry, Bharathidasan University, Tiruchirappalli, and Organica Aromatics Pvt Ltd Bangalore, India, for providing laboratory facilities.

supplementary crystallographic information

Comment

Chromenes (benzopyrans) and their derivatives have numerous biological and pharmacological properties (Tang et al., 2007) such as antisterility (Brooks, 1998) and anticancer activity (Hyana & Saimoto, 1987). In addition, polyfunctionalized chromene units are present in numerous natural products (Hatakeyama et al., 1988). 4H-chromenes are important synthons for some natural products (Liu et al., 2007). As a part of our structural investigations on 4H-chromene derivatives and compounds containing the benzopyran fragment, the single-crystal X-ray diffraction study on the title compound was carried out.

The chromene ring is almost planar similarly as those found in the related chromene derivatives (Wang, Zhang et al., 2003; Wang, Fang et al., 2003). The total puckering amplitude of the chromene ring is 0.143 (2) Å in the title structure. The interplanar angle between the chromene ring and the 2-phenyl ring is 6.8 (2)° thereby indicating the almost coplanar arrangement (Fig. 1). The benzyl group at C5 is slightly distorted from coplanarity with the chromene ring whereas the benzyl group at C7 is clearly non-coplanar as discerned from the respective interplanar angles of 7.6 (1)° and 70.01 (7)°.

The crystal structure is stabilized by the interplay of C–H···O and C–H···π interactions (Fig. 2, Table 1; Desiraju, 1989; Desiraju & Steiner, 1999). The C12–H12···O1 interaction is involved in a motif of a graph set S(5) (Bernstein et al., 1995; Etter, 1990). In another S(5) motif, C21–H21···O18 interaction is involved. The C8–H8···Cg2ii and C27–H27···Cg2ii (Cg2 is the centroid of the ring C28\C29···C33) interactions take part in the motif of the graph set R12(7) where the entire Cg2 ring C28\C29···C33 is considered as a single acceptor atom.

There are two edge-to-face π···π interactions between Cg3 (O1\C2\C3\C4\C9\C10) and Cg4 (C5\C6\C7\C8\C9\C10) [2-x, 2-y, -z] at 3.894 Å with α = 4.44, β = 26.68, γ = 31.06° and perpendicular distances being 3.336 and 3.480 Å, Cg4 and Cg1 (C20\C21\C22\C23\C24\C25) [1-x, 2-y, -z] at 3.673 Å with α = 6.87, β = 20.69, γ = 16.31° and perpendicular distances being 3.525 and 3.436 Å. There is a face to face π···π interaction between two symmetery related Cg4 (2-x, 2-y, -z) rings at 3.460 Å with α = 0.00, β = 10.24, γ = 10.24° and perpendicular distances being 3.405 Å (α is the dihedral angle between the planes I and J where I is the plane of centroid 1 and J is the plane of centroid 2, β is the angle between the vector Cg(I)→Cg(J) and the normal to plane I, γ is the angle between the vector Cg(I)→ Cg(J) and the normal to plane J, the two perpendicular distances denote the perpendicular distances of Cg(I) on ring J and Cg(J) on ring I).

Experimental

A suspension of chrysin (3.93 mmol, 1.00 g) and potassium carbonate (11.81 mmol, 1.64 g) in dimethyl formamide (10 ml) were added into a round bottom flask. The reaction mixture was heated to 383 K for 2–3 h. The reaction mixture was then cooled to 353 K and benzyl chloride (15.74 mmol, 1.99 g) was slowly added to the reaction mixture with the help of a dropping funnel. The reaction mixture was maintained for 8–9 h at 353 K and monitored by a high pressure liquid chromatography (HPLC). After completion of the reaction, the content was quenched with water and stirred for 30–45 min at 303 K. The obtained crude solid was filtered and washed with plenty of water followed by methanol and dried under vacuum at 343 K. The crude product was dissolved in 20 ml of 1:1 (volume) mixture of dichloromethane and n-hexane. The clear solution was kept for a week without stirring. Diffraction quality prism shaped crystals of average size 0.3 mm were obtained which were filtered and washed with n-hexane and dried under vacuum at 343 K. Yield: 90%

Refinement

All the H-atoms were observed in the difference electron density map. However, they were situated into idealized positions with C–H = 0.93 and 0.97 Å for aryl and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.
The title molecule showing the displacement ellipsoids depicted at the 50% probability level for all non-H atoms. The hydrogen atoms are drawn as spheres of arbitrary radius.
Fig. 2.
The molecular packing viewed down the a-axis. Dashed lines represent weak C–H···O interactions.

Crystal data

C29H22O4Z = 2
Mr = 434.47F000 = 456
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Melting point = 439–441 K
a = 9.496 (3) ÅMo Kα radiation λ = 0.71073 Å
b = 11.572 (3) ÅCell parameters from 589 reflections
c = 11.767 (3) Åθ = 2.5–27.5º
α = 66.564 (4)ºµ = 0.08 mm1
β = 79.668 (5)ºT = 293 (2) K
γ = 73.836 (5)ºPrism, colourless
V = 1136.1 (5) Å30.45 × 0.33 × 0.23 mm

Data collection

Bruker SMART APEX CCD diffractometer5302 independent reflections
Radiation source: fine-focus sealed tube3534 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.018
Detector resolution: 0.3 pixels mm-1θmax = 28.0º
T = 293(2) Kθmin = 1.9º
ω scansh = −12→12
Absorption correction: multi-scan(SADABS; Sheldrick, 1998)k = −15→15
Tmin = 0.963, Tmax = 0.981l = −15→15
13435 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.155  w = 1/[σ2(Fo2) + (0.0655P)2 + 0.1818P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5302 reflectionsΔρmax = 0.20 e Å3
298 parametersΔρmin = −0.23 e Å3
88 constraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.10569 (12)0.71663 (11)0.18466 (11)0.0536 (3)
C21.13210 (18)0.63546 (16)0.12145 (16)0.0511 (4)
C31.0413 (2)0.65365 (18)0.03827 (18)0.0619 (5)
H31.06250.5959−0.00260.074*
C40.91202 (19)0.75798 (18)0.00843 (17)0.0585 (5)
C50.78763 (16)0.96910 (16)0.04245 (15)0.0487 (4)
C60.77971 (17)1.05076 (16)0.10297 (15)0.0502 (4)
H60.70841.12790.08520.060*
C70.87887 (17)1.01797 (16)0.19122 (15)0.0483 (4)
C80.98609 (17)0.90462 (16)0.21876 (15)0.0503 (4)
H81.05210.88250.27770.060*
C90.89526 (17)0.85064 (16)0.06822 (15)0.0482 (4)
C100.99182 (16)0.82506 (15)0.15545 (15)0.0469 (4)
C111.26652 (19)0.53363 (16)0.15672 (17)0.0547 (4)
C121.3574 (2)0.53208 (19)0.23695 (19)0.0690 (5)
H121.33210.59570.27110.083*
C131.4850 (3)0.4377 (2)0.2670 (2)0.0883 (7)
H131.54510.43850.32090.106*
C141.5238 (3)0.3431 (2)0.2185 (3)0.0958 (8)
H141.61050.27990.23810.115*
C151.4336 (3)0.3424 (2)0.1410 (3)0.1085 (10)
H151.45850.27730.10870.130*
C161.3067 (2)0.4365 (2)0.1098 (2)0.0867 (7)
H161.24700.43460.05620.104*
O170.82679 (16)0.76574 (15)−0.06285 (15)0.0858 (5)
O180.69794 (12)0.99537 (12)−0.04619 (11)0.0609 (3)
C190.59954 (19)1.11810 (18)−0.08836 (17)0.0587 (5)
H19A0.65221.1861−0.11230.070*
H19B0.52451.1272−0.02270.070*
C200.52982 (18)1.12834 (19)−0.19821 (16)0.0588 (5)
C210.5695 (2)1.0332 (2)−0.24758 (18)0.0691 (5)
H210.64300.9601−0.21370.083*
C220.5008 (3)1.0456 (3)−0.3475 (2)0.0871 (7)
H220.52850.9806−0.38010.105*
C230.3932 (3)1.1517 (3)−0.3984 (2)0.0995 (8)
H230.34781.1597−0.46570.119*
C240.3522 (3)1.2469 (3)−0.3498 (2)0.0956 (8)
H240.27841.3196−0.38430.115*
C250.4196 (2)1.2359 (2)−0.2496 (2)0.0767 (6)
H250.39071.3009−0.21700.092*
O260.86159 (12)1.10706 (11)0.24369 (11)0.0595 (3)
C270.9671 (2)1.08276 (19)0.32789 (18)0.0655 (5)
H27A1.06481.07790.28550.079*
H27B0.96631.00090.39630.079*
C280.9288 (2)1.19031 (17)0.37608 (16)0.0578 (5)
C290.8056 (2)1.2047 (2)0.45477 (18)0.0678 (5)
H290.74271.14920.47500.081*
C300.7731 (3)1.2992 (2)0.5043 (2)0.0807 (6)
H300.68851.30820.55690.097*
C310.8657 (4)1.3795 (2)0.4758 (2)0.1003 (9)
H310.84481.44340.50950.120*
C320.9893 (4)1.3666 (3)0.3978 (3)0.1228 (12)
H321.05271.42140.37870.147*
C331.0199 (3)1.2724 (3)0.3475 (2)0.0965 (8)
H331.10341.26470.29360.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0515 (6)0.0537 (7)0.0603 (7)0.0017 (5)−0.0168 (5)−0.0296 (6)
C20.0536 (9)0.0488 (9)0.0564 (10)−0.0114 (7)−0.0058 (8)−0.0247 (8)
C30.0644 (11)0.0605 (11)0.0732 (12)−0.0072 (9)−0.0160 (9)−0.0375 (10)
C40.0571 (10)0.0673 (11)0.0617 (11)−0.0133 (9)−0.0150 (8)−0.0309 (9)
C50.0392 (8)0.0589 (10)0.0505 (9)−0.0107 (7)−0.0094 (7)−0.0207 (8)
C60.0413 (8)0.0527 (9)0.0542 (10)−0.0030 (7)−0.0119 (7)−0.0189 (8)
C70.0452 (8)0.0530 (9)0.0508 (9)−0.0063 (7)−0.0084 (7)−0.0246 (8)
C80.0461 (9)0.0573 (10)0.0523 (9)−0.0024 (7)−0.0154 (7)−0.0265 (8)
C90.0433 (8)0.0562 (10)0.0500 (9)−0.0111 (7)−0.0063 (7)−0.0236 (8)
C100.0417 (8)0.0505 (9)0.0489 (9)−0.0060 (7)−0.0066 (7)−0.0203 (7)
C110.0560 (10)0.0471 (9)0.0635 (11)−0.0069 (8)−0.0085 (8)−0.0246 (8)
C120.0745 (12)0.0592 (11)0.0775 (13)0.0086 (9)−0.0264 (10)−0.0371 (10)
C130.0869 (15)0.0769 (14)0.1058 (18)0.0158 (12)−0.0460 (14)−0.0452 (14)
C140.0860 (16)0.0741 (15)0.129 (2)0.0242 (12)−0.0414 (15)−0.0530 (15)
C150.1037 (18)0.0862 (17)0.159 (3)0.0276 (14)−0.0466 (18)−0.0866 (18)
C160.0804 (14)0.0795 (15)0.1213 (19)0.0102 (12)−0.0371 (13)−0.0655 (14)
O170.0821 (10)0.0934 (11)0.1075 (11)0.0004 (8)−0.0444 (9)−0.0614 (9)
O180.0536 (7)0.0666 (8)0.0682 (8)−0.0024 (6)−0.0269 (6)−0.0290 (6)
C190.0521 (10)0.0597 (11)0.0642 (11)−0.0109 (8)−0.0187 (8)−0.0178 (9)
C200.0453 (9)0.0740 (12)0.0528 (10)−0.0185 (9)−0.0099 (8)−0.0130 (9)
C210.0544 (11)0.0946 (15)0.0583 (11)−0.0131 (10)−0.0102 (9)−0.0284 (11)
C220.0783 (14)0.127 (2)0.0646 (13)−0.0213 (14)−0.0128 (11)−0.0418 (14)
C230.0856 (17)0.147 (3)0.0628 (14)−0.0260 (17)−0.0273 (12)−0.0263 (16)
C240.0728 (15)0.108 (2)0.0810 (16)−0.0075 (13)−0.0355 (12)−0.0054 (15)
C250.0621 (12)0.0810 (14)0.0764 (14)−0.0089 (10)−0.0246 (10)−0.0151 (11)
O260.0566 (7)0.0597 (7)0.0690 (8)0.0068 (6)−0.0251 (6)−0.0357 (6)
C270.0673 (11)0.0692 (12)0.0670 (12)0.0059 (9)−0.0303 (9)−0.0360 (10)
C280.0663 (11)0.0582 (11)0.0517 (10)−0.0029 (9)−0.0181 (9)−0.0249 (9)
C290.0647 (12)0.0765 (13)0.0680 (12)−0.0101 (10)−0.0132 (10)−0.0333 (11)
C300.0873 (15)0.0879 (16)0.0690 (14)0.0021 (13)−0.0108 (11)−0.0439 (12)
C310.167 (3)0.0714 (15)0.0735 (16)−0.0217 (17)−0.0086 (17)−0.0416 (13)
C320.192 (3)0.120 (2)0.098 (2)−0.093 (2)0.033 (2)−0.0632 (19)
C330.119 (2)0.116 (2)0.0828 (16)−0.0573 (17)0.0248 (14)−0.0581 (15)

Geometric parameters (Å, °)

O1—C21.3623 (19)C19—C201.505 (2)
O1—C101.3772 (19)C19—H19A0.9700
C2—C31.336 (2)C19—H19B0.9700
C2—C111.468 (2)C20—C211.375 (3)
C3—C41.442 (2)C20—C251.384 (3)
C3—H30.9300C21—C221.386 (3)
C4—O171.2287 (19)C21—H210.9300
C4—C91.461 (2)C22—C231.359 (3)
C5—O181.3521 (18)C22—H220.9300
C5—C61.372 (2)C23—C241.369 (4)
C5—C91.420 (2)C23—H230.9300
C6—C71.395 (2)C24—C251.386 (3)
C6—H60.9300C24—H240.9300
C7—O261.3590 (19)C25—H250.9300
C7—C81.378 (2)O26—C271.4291 (19)
C8—C101.382 (2)C27—C281.496 (2)
C8—H80.9300C27—H27A0.9700
C9—C101.388 (2)C27—H27B0.9700
C11—C161.376 (2)C28—C331.365 (3)
C11—C121.381 (2)C28—C291.371 (3)
C12—C131.376 (3)C29—C301.373 (3)
C12—H120.9300C29—H290.9300
C13—C141.364 (3)C30—C311.361 (4)
C13—H130.9300C30—H300.9300
C14—C151.362 (3)C31—C321.367 (4)
C14—H140.9300C31—H310.9300
C15—C161.373 (3)C32—C331.378 (3)
C15—H150.9300C32—H320.9300
C16—H160.9300C33—H330.9300
O18—C191.415 (2)
C2—O1—C10119.99 (12)O18—C19—H19A110.1
C3—C2—O1120.68 (15)C20—C19—H19A110.1
C3—C2—C11127.46 (16)O18—C19—H19B110.1
O1—C2—C11111.85 (14)C20—C19—H19B110.1
C2—C3—C4123.57 (16)H19A—C19—H19B108.4
C2—C3—H3118.2C21—C20—C25118.81 (18)
C4—C3—H3118.2C21—C20—C19122.32 (17)
O17—C4—C3121.05 (16)C25—C20—C19118.86 (19)
O17—C4—C9124.67 (17)C20—C21—C22120.4 (2)
C3—C4—C9114.27 (14)C20—C21—H21119.8
O18—C5—C6123.46 (15)C22—C21—H21119.8
O18—C5—C9115.42 (14)C23—C22—C21120.6 (2)
C6—C5—C9121.11 (14)C23—C22—H22119.7
C5—C6—C7119.92 (15)C21—C22—H22119.7
C5—C6—H6120.0C22—C23—C24119.6 (2)
C7—C6—H6120.0C22—C23—H23120.2
O26—C7—C8124.22 (14)C24—C23—H23120.2
O26—C7—C6114.59 (14)C23—C24—C25120.6 (2)
C8—C7—C6121.18 (15)C23—C24—H24119.7
C7—C8—C10117.46 (14)C25—C24—H24119.7
C7—C8—H8121.3C20—C25—C24120.0 (2)
C10—C8—H8121.3C20—C25—H25120.0
C10—C9—C5115.96 (15)C24—C25—H25120.0
C10—C9—C4119.12 (15)C7—O26—C27116.84 (13)
C5—C9—C4124.91 (14)O26—C27—C28108.76 (14)
O1—C10—C8113.76 (13)O26—C27—H27A109.9
O1—C10—C9121.86 (14)C28—C27—H27A109.9
C8—C10—C9124.36 (15)O26—C27—H27B109.9
C16—C11—C12117.70 (17)C28—C27—H27B109.9
C16—C11—C2120.75 (16)H27A—C27—H27B108.3
C12—C11—C2121.55 (15)C33—C28—C29118.51 (19)
C13—C12—C11120.97 (18)C33—C28—C27120.59 (19)
C13—C12—H12119.5C29—C28—C27120.83 (19)
C11—C12—H12119.5C28—C29—C30121.4 (2)
C14—C13—C12120.5 (2)C28—C29—H29119.3
C14—C13—H13119.8C30—C29—H29119.3
C12—C13—H13119.8C31—C30—C29119.4 (2)
C15—C14—C13119.0 (2)C31—C30—H30120.3
C15—C14—H14120.5C29—C30—H30120.3
C13—C14—H14120.5C30—C31—C32120.1 (2)
C14—C15—C16121.0 (2)C30—C31—H31119.9
C14—C15—H15119.5C32—C31—H31119.9
C16—C15—H15119.5C31—C32—C33119.9 (3)
C15—C16—C11120.8 (2)C31—C32—H32120.0
C15—C16—H16119.6C33—C32—H32120.0
C11—C16—H16119.6C28—C33—C32120.7 (2)
C5—O18—C19119.10 (13)C28—C33—H33119.7
O18—C19—C20107.99 (15)C32—C33—H33119.7
C10—O1—C2—C3−5.7 (2)C2—C11—C12—C13−178.5 (2)
C10—O1—C2—C11174.00 (14)C11—C12—C13—C14−0.4 (4)
O1—C2—C3—C40.4 (3)C12—C13—C14—C15−0.7 (4)
C11—C2—C3—C4−179.18 (17)C13—C14—C15—C161.1 (5)
C2—C3—C4—O17−175.26 (19)C14—C15—C16—C11−0.4 (5)
C2—C3—C4—C95.6 (3)C12—C11—C16—C15−0.7 (4)
O18—C5—C6—C7−178.38 (15)C2—C11—C16—C15178.9 (2)
C9—C5—C6—C70.2 (3)C6—C5—O18—C196.3 (2)
C5—C6—C7—O26179.15 (14)C9—C5—O18—C19−172.41 (14)
C5—C6—C7—C80.3 (3)C5—O18—C19—C20171.97 (14)
O26—C7—C8—C10−178.51 (15)O18—C19—C20—C21−3.9 (2)
C6—C7—C8—C100.2 (3)O18—C19—C20—C25174.59 (16)
O18—C5—C9—C10177.49 (14)C25—C20—C21—C220.4 (3)
C6—C5—C9—C10−1.2 (2)C19—C20—C21—C22178.92 (18)
O18—C5—C9—C4−1.2 (2)C20—C21—C22—C230.0 (3)
C6—C5—C9—C4−179.92 (16)C21—C22—C23—C24−0.3 (4)
O17—C4—C9—C10174.32 (18)C22—C23—C24—C250.2 (4)
C3—C4—C9—C10−6.5 (2)C21—C20—C25—C24−0.5 (3)
O17—C4—C9—C5−7.0 (3)C19—C20—C25—C24−179.12 (19)
C3—C4—C9—C5172.14 (16)C23—C24—C25—C200.3 (4)
C2—O1—C10—C8−174.37 (14)C8—C7—O26—C273.3 (3)
C2—O1—C10—C94.4 (2)C6—C7—O26—C27−175.52 (15)
C7—C8—C10—O1177.45 (14)C7—O26—C27—C28−179.56 (15)
C7—C8—C10—C9−1.3 (3)O26—C27—C28—C33−114.1 (2)
C5—C9—C10—O1−176.87 (14)O26—C27—C28—C2969.2 (2)
C4—C9—C10—O11.9 (2)C33—C28—C29—C300.1 (3)
C5—C9—C10—C81.8 (2)C27—C28—C29—C30176.85 (18)
C4—C9—C10—C8−179.40 (16)C28—C29—C30—C31−0.7 (3)
C3—C2—C11—C16−5.0 (3)C29—C30—C31—C320.5 (4)
O1—C2—C11—C16175.35 (18)C30—C31—C32—C330.3 (5)
C3—C2—C11—C12174.54 (19)C29—C28—C33—C320.7 (4)
O1—C2—C11—C12−5.1 (2)C27—C28—C33—C32−176.1 (2)
C16—C11—C12—C131.1 (3)C31—C32—C33—C28−0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O10.932.372.701 (2)101
C21—H21···O180.932.332.685 (2)102
C16—H16···O17i0.932.573.212 (3)127
C30—H30···Cg1ii0.933.123.838135
C8—H8···Cg2iii0.933.304.066142
C27—H27B···Cg2iii0.973.184.083156

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y, z+1; (iii) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2125).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brooks, G. T. (1998). Pestic. Sci.22, 41–50.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids, pp. 125–167. Amsterdam: Elsevier.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 11–40. New York: Oxford University Press.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • Hatakeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.
  • Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
  • Liu, C.-B., Chen, Y.-H., Zhou, X.-Y., Ding, L. & Wen, H.-L. (2007). Acta Cryst. E63, o90–o91.
  • Sheldrick, G. M. (1998). SADABS University of Gottingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.
  • Wang, J.-F., Fang, M.-J., Huang, H.-Q., Li, G.-L., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1517–o1518.
  • Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, o1244–o1245.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography