PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2358.
Published online 2008 November 13. doi:  10.1107/S1600536808037021
PMCID: PMC2959924

2-(Benzoyl­amino­meth­yl)pyridinium chloride

Abstract

The title compound, C13H13N2O+·Cl, (1), was obtained as a colorless crystalline by-product during the synthesis of N-(2-pyridylmeth­yl)benzoyl­amine (2). The C—O bond length of 1.231 (2) Å in the benzoyl unit of (1) is slightly elongated in comparison with isolated C=O double bonds as also observed for (2) [1.237 (2) Å]. The N—C bond length of 1.345 (2) Å in the benzoic acid amide unit indicates the formation of an allylic O—C—N system and is very similar to the N—C bond lengths [1.345 (2) Å] of the pyridyl group. A further delocalization of charge from this allylic system into the phenyl fragment does not occur, which can be deduced from a characterisitc C—C single bond length of 1.499 (2) Å between these fragments. A dimer is formed via N—H(...)Cl hydrogen bonds. The two rings make a dihedral angle of 105.0 (2)°

Related literature

For general background, see: Westerhausen et al. (2001 [triangle], 2002 [triangle]). For related structures, see: Koch et al. (2008 [triangle]); Prostota et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2358-scheme1.jpg

Experimental

Crystal data

  • C13H13N2O+·Cl
  • M r = 248.70
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2358-efi1.jpg
  • a = 4.6159 (1) Å
  • b = 27.4573 (10) Å
  • c = 9.6851 (4) Å
  • β = 96.554 (2)°
  • V = 1219.47 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.30 mm−1
  • T = 183 (2) K
  • 0.05 × 0.05 × 0.05 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 7630 measured reflections
  • 2776 independent reflections
  • 2094 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.095
  • S = 1.00
  • 2776 reflections
  • 206 parameters
  • All H-atom parameters refined
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808037021/dn2394sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037021/dn2394Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Deutsche Forschungsgemeinschaft (DFG, Bonn–Band Godesberg, Germany) for generous financial support. We also acknowledge the funding of the Fonds der Chemischen Indunstrie (Frankfurt/Main, Germany).

supplementary crystallographic information

Comment

In the past, metallated (2-pyridylmethyl)(trialkysilyl)amines were used for zinc-mediated oxidative C–C coupling reactions yielding [1,2-dipyridyl-1,2-bis(triisopropylsilylamido)ethane] bis(methylzinc) (Westerhausen et al. 2001 and 2002). The reaction of (2-pyridylmethyl)(tert-butyldimethylsilyl)amine and benzoyl chloride in toluene quantitatively yields N-(2-pyridylmethyl)benzoylamine ((1)) (Koch et al. 2008). Treatment of (1) with benzoyl chloride after deprotonation with butyllithium gives N-(2-pyridylmethyl)dibenzoylamine with rather poor yields. The title compound N-(2-pyridylmethyl)benzoylamine hydrochloride was also obtained as a colorless crystalline by-product.

A view of the title compound is shown in Fig. 1 . The C1—O1 bond length of 1.231 (2) Å is slightly elongated in comparison to isolated C=O double bonds. The value of the N1—C1 bond length of 1.345 (2)Å shows the formation of an allylic O1—C1—N1 system and is very similar to the N2—C9 bond length [1.345 (2) Å] of the pyridyl group. A further delocalization of charge from this allylic system into the phenyl fragment can be excluded on the basis of a characterisitc C8—C9 single bond of 1.499 (2) Å.

Two molecules are linked through N-H···Cl hydrogen bonds to form a pseudo dimer (Table 1, Fig. 2)

Experimental

All manipulations were carried out in an atmosphere of argon using standard Schlenk techniques. Toluene and pentane were dried (Na/benzophenone) and distilled prior to use. 2-Pyridylmethylamine and butyllithium were purchased form Aldrich. Tert-butyldimethylchlorosilane and benzoyl chloride were purchased from Merck.1H NMR and 13C NMR spectra were recorded at [D1]chloroform solutions at ambient temperature on a Bruker AC 400 MHz s pectrometer and were referenced to deuterated benzene as an internal standard. 1H NMR (200 MHz, [D1]chloroform) d = 8.93 (s, br.,1H, NH); 8.63 (d, 1H, Pyr13); 8.35 (t, 1H, Pyr11); 8.06 (d, 1H, Pyr10); 7.98 (d, 2H, Ph); 7.79 (t, 1H, Pyr12); 7.48–7.37 (m, 3H, Ph); 5.03 (d, 2H, CH2)

Refinement

All hydrogen atoms bonded were located by difference Fourier synthesis and freely refined.

Figures

Fig. 1.
The molecular structure of the title compound with the atom-labeling scheme. Ellipsoids are drawn at the 40% probability level. H atoms are represented as smal spheres of arbitrary radii.
Fig. 2.
A view of the pseudo dimer formed by N-H···Cl hydrogen bonds shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.[Symetry code: (A)1 - x, -y + 1, -z].
Fig. 3.
Compounds (1) and (2).

Crystal data

C13H13N2O+·ClF000 = 520
Mr = 248.70Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 7630 reflections
a = 4.61590 (10) Åθ = 2.2–27.5º
b = 27.4573 (10) ŵ = 0.30 mm1
c = 9.6851 (4) ÅT = 183 (2) K
β = 96.554 (2)ºPrism, colourless
V = 1219.47 (7) Å30.05 × 0.05 × 0.05 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2094 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Monochromator: graphiteθmax = 27.5º
T = 183(2) Kθmin = 2.2º
[var phi] and ω scansh = −5→4
Absorption correction: nonek = −35→35
7630 measured reflectionsl = −12→11
2776 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.095  w = 1/[σ2(Fo2) + (0.0422P)2 + 0.4338P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
2776 reflectionsΔρmax = 0.21 e Å3
206 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.2116 (3)0.65339 (4)−0.04007 (13)0.0309 (3)
N10.1330 (3)0.59929 (5)0.03755 (15)0.0239 (3)
H1N10.271 (5)0.5898 (8)0.099 (2)0.042 (6)*
N2−0.1329 (3)0.54981 (5)−0.30377 (15)0.0243 (3)
H1N2−0.255 (5)0.5266 (7)−0.272 (2)0.039 (6)*
C10.0007 (3)0.64277 (6)0.04314 (17)0.0221 (3)
C20.1261 (3)0.67800 (6)0.15220 (17)0.0232 (4)
C3−0.0038 (4)0.72351 (7)0.1548 (2)0.0330 (4)
H3−0.171 (5)0.7308 (7)0.087 (2)0.043 (6)*
C40.1007 (5)0.75799 (7)0.2522 (2)0.0408 (5)
H40.007 (5)0.7882 (9)0.255 (2)0.056 (7)*
C50.3380 (4)0.74759 (7)0.3472 (2)0.0377 (5)
H50.406 (4)0.7714 (7)0.414 (2)0.039 (5)*
C60.4694 (4)0.70252 (8)0.3461 (2)0.0369 (5)
H60.647 (5)0.6940 (8)0.407 (2)0.050 (6)*
C70.3643 (4)0.66740 (7)0.24958 (19)0.0298 (4)
H70.461 (4)0.6359 (8)0.250 (2)0.038 (5)*
C80.0147 (4)0.56249 (6)−0.05929 (18)0.0242 (4)
H8A0.127 (4)0.5338 (7)−0.042 (2)0.029 (5)*
H8B−0.185 (4)0.5556 (7)−0.0494 (19)0.033 (5)*
C90.0378 (3)0.57542 (6)−0.20796 (17)0.0213 (3)
C100.2253 (4)0.60969 (6)−0.25333 (19)0.0276 (4)
H100.344 (4)0.6278 (7)−0.188 (2)0.035 (5)*
C110.2298 (4)0.61687 (7)−0.3940 (2)0.0345 (4)
H110.358 (5)0.6417 (8)−0.427 (2)0.049 (6)*
C120.0502 (4)0.58950 (8)−0.4893 (2)0.0376 (5)
H120.054 (5)0.5944 (8)−0.585 (2)0.048 (6)*
C13−0.1299 (4)0.55588 (7)−0.44091 (19)0.0320 (4)
H13−0.260 (4)0.5361 (7)−0.499 (2)0.041 (6)*
Cl10.55721 (9)0.528402 (15)0.23039 (4)0.02736 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0307 (6)0.0280 (7)0.0314 (7)0.0022 (5)−0.0081 (5)−0.0028 (5)
N10.0298 (8)0.0213 (7)0.0188 (8)0.0000 (6)−0.0043 (6)−0.0013 (6)
N20.0251 (7)0.0234 (7)0.0235 (8)0.0004 (6)−0.0007 (6)−0.0031 (6)
C10.0237 (8)0.0229 (8)0.0194 (9)−0.0026 (6)0.0012 (6)0.0006 (7)
C20.0278 (8)0.0222 (8)0.0203 (9)−0.0053 (7)0.0061 (6)−0.0011 (7)
C30.0348 (10)0.0260 (10)0.0373 (12)−0.0017 (8)0.0005 (8)−0.0044 (8)
C40.0487 (12)0.0254 (10)0.0490 (13)−0.0043 (9)0.0079 (10)−0.0115 (9)
C50.0449 (11)0.0366 (11)0.0323 (11)−0.0165 (9)0.0083 (9)−0.0164 (9)
C60.0398 (11)0.0416 (12)0.0280 (11)−0.0110 (9)−0.0017 (8)−0.0070 (9)
C70.0340 (9)0.0290 (9)0.0259 (10)−0.0049 (8)0.0009 (7)−0.0028 (8)
C80.0312 (9)0.0179 (8)0.0227 (9)−0.0032 (7)−0.0001 (7)−0.0016 (7)
C90.0229 (8)0.0180 (8)0.0222 (9)0.0036 (6)−0.0016 (6)−0.0028 (7)
C100.0290 (9)0.0253 (9)0.0278 (10)−0.0025 (7)0.0005 (7)0.0005 (8)
C110.0384 (10)0.0359 (10)0.0302 (11)−0.0014 (8)0.0086 (8)0.0047 (9)
C120.0444 (11)0.0466 (12)0.0218 (10)0.0048 (9)0.0043 (8)0.0011 (9)
C130.0339 (10)0.0369 (11)0.0236 (10)0.0044 (8)−0.0040 (7)−0.0069 (8)
Cl10.0294 (2)0.0264 (2)0.0248 (2)0.00059 (16)−0.00344 (16)−0.00006 (17)

Geometric parameters (Å, °)

O1—C11.2308 (19)C5—H50.95 (2)
N1—C11.345 (2)C6—C71.391 (3)
N1—C81.443 (2)C6—H60.99 (2)
N1—H1N10.86 (2)C7—H70.97 (2)
N2—C131.340 (2)C8—C91.499 (2)
N2—C91.345 (2)C8—H8A0.946 (19)
N2—H1N20.93 (2)C8—H8B0.95 (2)
C1—C21.499 (2)C9—C101.384 (2)
C2—C31.387 (2)C10—C111.380 (3)
C2—C71.395 (2)C10—H100.93 (2)
C3—C41.384 (3)C11—C121.389 (3)
C3—H30.98 (2)C11—H110.98 (2)
C4—C51.378 (3)C12—C131.361 (3)
C4—H40.94 (2)C12—H120.94 (2)
C5—C61.379 (3)C13—H130.95 (2)
C1—N1—C8120.53 (14)C6—C7—C2119.81 (18)
C1—N1—H1N1122.9 (14)C6—C7—H7119.5 (11)
C8—N1—H1N1115.7 (14)C2—C7—H7120.7 (11)
C13—N2—C9123.16 (16)N1—C8—C9113.30 (14)
C13—N2—H1N2119.3 (13)N1—C8—H8A108.1 (11)
C9—N2—H1N2117.6 (13)C9—C8—H8A105.5 (12)
O1—C1—N1121.02 (15)N1—C8—H8B111.8 (12)
O1—C1—C2121.53 (15)C9—C8—H8B108.5 (11)
N1—C1—C2117.43 (14)H8A—C8—H8B109.4 (16)
C3—C2—C7119.00 (16)N2—C9—C10118.35 (16)
C3—C2—C1117.44 (15)N2—C9—C8116.02 (14)
C7—C2—C1123.56 (15)C10—C9—C8125.59 (15)
C4—C3—C2120.69 (18)C11—C10—C9119.45 (17)
C4—C3—H3120.5 (12)C11—C10—H10121.3 (12)
C2—C3—H3118.8 (12)C9—C10—H10119.2 (12)
C5—C4—C3120.15 (19)C10—C11—C12120.25 (18)
C5—C4—H4119.7 (13)C10—C11—H11119.8 (13)
C3—C4—H4120.2 (14)C12—C11—H11120.0 (13)
C6—C5—C4119.87 (18)C13—C12—C11118.67 (19)
C6—C5—H5120.8 (12)C13—C12—H12121.2 (13)
C4—C5—H5119.3 (12)C11—C12—H12120.1 (13)
C5—C6—C7120.47 (19)N2—C13—C12120.11 (17)
C5—C6—H6123.1 (13)N2—C13—H13116.0 (13)
C7—C6—H6116.3 (13)C12—C13—H13123.9 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···Cl10.86 (2)2.41 (2)3.2057 (15)153.3 (18)
N2—H1N2···Cl1i0.93 (2)2.13 (2)3.0446 (16)171.7 (18)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2394).

References

  • Koch, C., Kahnes, M., Schulz, M., Görls, H. & Westerhausen, M. (2008). Eur. J. Inorg. Chem. pp. 1067–1077.
  • Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Prostota, A. (2004). Zh. Org. Form. Khim 2, 26–32.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westerhausen, M., Bollwein, T., Makropoulos, N., Rotter, T. M., Habereder, T., suter, M. & Nöth, H. (2001). Eur. J. Inorg. Chem. pp. 851–857.
  • Westerhausen, M., Bollwein, T., Makropoulos, N., Schneiderbauer, S., Suter, M., Nöth, H., Mayer, P., Piotrowski, H., Polborn, K. & Pfitzner, A. (2002). Eur. J. Inorg. Chem. pp. 389–404.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography