PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2386.
Published online 2008 November 20. doi:  10.1107/S1600536808037495
PMCID: PMC2959923

3-(4-Methoxy­phen­yl)pent-2-ene-1,5-dioic acid

Abstract

In the title compound, C12H12O5, mol­ecules are linked into anti­parallel hydrogen-bonded sheets through inversion dimers generated via two O—H(...)O hydrogen bonds. Using the R 2 2(8) motif as a building block, hydrogen-bonded chains of a C 2 2(8) superstructure are then generated.

Related literature

For 3-(4-methoxy­phen­yl)-2-pentene-1,5-dioic acid as a synthon in organic chemistry, see: Kon & Nanji (1933 [triangle]); Linstead (1941 [triangle]). A number of heterocycles such as pyridine-2,6-diones can be obtained from it, see: Pednekar et al. (2004 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2386-scheme1.jpg

Experimental

Crystal data

  • C12H12O5
  • M r = 236.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2386-efi1.jpg
  • a = 5.011 (1) Å
  • b = 10.940 (2) Å
  • c = 20.438 (4) Å
  • β = 90.665 (3)°
  • V = 1120.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 292 (2) K
  • 0.52 × 0.32 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.902, T max = 0.973
  • 8509 measured reflections
  • 2190 independent reflections
  • 2140 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.150
  • S = 1.22
  • 2190 reflections
  • 157 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037495/bq2105sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037495/bq2105Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA–DST program at IISc.

supplementary crystallographic information

Comment

3-(4-Methoxyphenyl)-2-pentene-1,5-dioic acid (Kon & Nanji, 1933; Linstead, 1941) acts as a synthon in organic chemistry. It is a precursor for many heterocyclic ring structures due to its inherent ability to form cyclic anhydrides. A number of heterocycles like pyridine-2,6-diones can be obtained from this dicarboxylic acid (Pednekar et al., 2004). Introduction of double bond at the α,β-position of the glutaric acid, leads to the formation of a glutaconic acid. As a consequence of this, there is a noticeable change in its reactivity. The reactivity of methylene group at γ-position is primarily responsible for the electrophilic substitutions taking places at the γ-position of 3-(4-Methoxyphenyl) -2-pentene-1,5-dioic acid.

The title compound, (I) crystallizes in the monoclinic crystal system in the centrosymmetric space group P21/c with Z = 4. Fig. 1 shows the asymmetric unit and the atom-numbering scheme. Selected bond lengths and torsion angles are given in Table 1.

In the asymmetric unit, compound (I) adopts the E conformation, with the =CH-COOH group in the plane of the methoxy phenyl ring (C6—C3—C2—C1 dihedral angle is 174.73°) while the –CH2—COOH group lies nearly perpendicular to the phenyl ring (C6—C3—C4—C5 dihedral angle is 89.25 °). Within the aryl rings, the C—C bonds are in the range of 1.374 (3) to 1.395 (3) Å, which is in accordance with those found in similar structures. The C—C single bonds (1.462 (3) to 1.511 (3) Å), C—C double bond (1.339 (3) Å) and C—O double bonds (1.219 (3) Å) are within the usual range.

The molecular assembly is stabilized by extensive intermolecular O—H···O hydrogen bonding, besides intramolecular C—H···O stabilizing weak interactions (Fig. 2). O1 at (x,y,z) acts as a hydrogen-bond donor to O2 at (3 - x,2 - y,-z) to form an inversion dimer centered at (1/2,0,0) and characterized by the usual R22(8) motif (Bernstein et al., 1995). The inversion dimer acts as a building block and leads to propagation of hydrogen bonded chains to generate a C22(8) superstructure. Similarly, O3 (x,y,z) acts as a hydrogen-bond donor to O4 at (2 - x,1 - y,-z) to form an inversion dimer centered at (1,1/2,0), also characterized by the R22(8) motif. Furthermore, the combination of two inversion dimers nearly perpendicular to one another leads to the formation of an intermolecular hydrogen-bonded staircase with neighboring inversion dimers generated via O1—H1···O2 strong hydrogen bonds being connected by O3—H3···O4 interactions. The overall supramolecular packing shows a layered arrangement, with alternate layers mutually parallel.

Experimental

To synthesize compound (I), citric acid [0.13 mol] was warmed in conc. H2SO4 (98%) with constant stirring till foam disappeared to obtain acetone dicarboxylic acid. By immersing the reaction flask in an ice bath; temperature was dropped down to 0°C. Anisole [0.113 mol] was then added slowly with vigorous stirring, over a period of one hour. During the addition, temperature was maintained at 0°C. Stirring was continued for a period of 6 hrs, while maintaining the temperature between 0°C to 5°C. The reaction mixture was then poured over crushed ice with stirring. The solid obtained was then filtered and washed with water and colorless single crystals grown from hot water (yield 12%, m.p. 445–447 K). 1H NMR (DMSO):δ 12.284 (s, 2H), 7.489 (d, 2H), 6.951 (d, 2H), 6.173 (s, 1H), 4.103 (s, 2H), 3.768 (s, 3H).

Refinement

All the H atoms were located and refined isotropically resulting in C—H bond lengths of 0.93 (3)–0.97 (3) Å.

Figures

Fig. 1.
View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
Packing diagram of (I) viewed down the c axis. The dotted lines indicate intermolecular O—H···O interactions.

Crystal data

C12H12O5F000 = 496
Mr = 236.22Dx = 1.401 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2190 reflections
a = 5.011 (1) Åθ = 2.0–26.0º
b = 10.940 (2) ŵ = 0.11 mm1
c = 20.438 (4) ÅT = 292 (2) K
β = 90.665 (3)ºCylindrical, colourless
V = 1120.3 (4) Å30.52 × 0.32 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer2190 independent reflections
Radiation source: fine-focus sealed tube2140 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 292(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.903, Tmax = 0.973k = −13→13
8509 measured reflectionsl = −23→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.151  w = 1/[σ2(Fo2) + (0.0537P)2 + 0.2183P] where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2190 reflectionsΔρmax = 0.32 e Å3
157 parametersΔρmin = −0.29 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.2159 (4)0.55290 (16)0.45189 (9)0.0564 (6)
O2−0.4196 (4)0.37432 (18)0.46474 (10)0.0687 (7)
O3−0.2679 (5)0.0034 (2)0.44062 (11)0.0841 (9)
O40.0612 (4)0.13111 (19)0.46215 (11)0.0771 (8)
O50.6191 (4)0.16520 (18)0.15123 (9)0.0627 (7)
C1−0.2519 (5)0.4369 (2)0.43791 (11)0.0464 (7)
C2−0.0718 (5)0.3943 (2)0.38696 (11)0.0440 (7)
C3−0.0755 (4)0.2846 (2)0.35786 (11)0.0405 (7)
C4−0.2604 (4)0.1838 (2)0.37974 (12)0.0445 (7)
C5−0.1392 (5)0.1029 (2)0.43137 (11)0.0434 (7)
C60.1041 (4)0.2562 (2)0.30272 (11)0.0402 (7)
C70.1417 (5)0.1368 (2)0.28065 (12)0.0490 (8)
C80.3102 (5)0.1101 (2)0.23008 (13)0.0533 (8)
C90.4516 (5)0.2015 (2)0.19929 (12)0.0479 (8)
C100.4146 (5)0.3214 (2)0.21898 (13)0.0517 (8)
C110.2436 (5)0.3467 (2)0.26956 (12)0.0488 (8)
C120.7575 (7)0.2569 (3)0.11593 (16)0.0731 (11)
H1−0.331950.575640.477100.0845*
H20.058530.448960.373380.0528*
H3−0.19480−0.035960.469890.1262*
H4A−0.422190.220120.396620.0534*
H4B−0.309560.134240.342140.0534*
H70.049870.073450.300760.0587*
H80.329310.029500.216410.0639*
H100.504630.384430.198190.0621*
H110.220330.427660.282060.0586*
H12A0.630990.310410.094960.1099*
H12B0.867020.219140.083430.1099*
H12C0.868000.303200.145550.1099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0599 (11)0.0484 (10)0.0612 (11)−0.0047 (8)0.0206 (9)0.0003 (8)
O20.0753 (13)0.0570 (11)0.0744 (13)−0.0160 (10)0.0334 (11)−0.0041 (9)
O30.0967 (16)0.0679 (13)0.0869 (16)−0.0389 (12)−0.0369 (13)0.0386 (11)
O40.0760 (14)0.0718 (13)0.0828 (14)−0.0282 (11)−0.0339 (12)0.0371 (11)
O50.0659 (12)0.0635 (12)0.0590 (11)0.0089 (9)0.0095 (9)−0.0162 (9)
C10.0473 (13)0.0478 (13)0.0440 (12)−0.0040 (10)0.0020 (10)0.0071 (10)
C20.0465 (13)0.0430 (12)0.0427 (12)−0.0048 (10)0.0041 (10)0.0076 (10)
C30.0376 (11)0.0424 (12)0.0412 (12)−0.0005 (9)−0.0060 (9)0.0119 (9)
C40.0398 (12)0.0434 (12)0.0503 (13)−0.0038 (10)−0.0024 (10)0.0054 (10)
C50.0468 (13)0.0424 (12)0.0410 (12)−0.0089 (10)0.0003 (10)0.0056 (9)
C60.0401 (11)0.0387 (11)0.0417 (12)0.0023 (9)−0.0058 (9)0.0043 (9)
C70.0551 (14)0.0399 (12)0.0517 (14)−0.0056 (10)−0.0068 (11)0.0004 (10)
C80.0620 (15)0.0406 (13)0.0569 (15)0.0041 (11)−0.0096 (12)−0.0104 (11)
C90.0455 (13)0.0532 (14)0.0448 (13)0.0077 (11)−0.0041 (10)−0.0082 (11)
C100.0545 (14)0.0431 (13)0.0578 (15)0.0008 (11)0.0128 (12)0.0006 (11)
C110.0542 (14)0.0350 (11)0.0575 (14)0.0025 (10)0.0104 (11)0.0005 (10)
C120.0732 (19)0.082 (2)0.0647 (18)0.0137 (16)0.0231 (15)−0.0056 (16)

Geometric parameters (Å, °)

O1—C11.313 (3)C7—C81.374 (4)
O2—C11.219 (3)C8—C91.381 (3)
O3—C51.280 (3)C9—C101.385 (3)
O4—C51.219 (3)C10—C111.378 (4)
O5—C91.359 (3)C2—H20.9300
O5—C121.421 (4)C4—H4A0.9700
O1—H10.8200C4—H4B0.9700
O3—H30.8200C7—H70.9300
C1—C21.462 (3)C8—H80.9300
C2—C31.339 (3)C10—H100.9300
C3—C61.483 (3)C11—H110.9300
C3—C41.511 (3)C12—H12A0.9600
C4—C51.500 (3)C12—H12B0.9600
C6—C111.393 (3)C12—H12C0.9600
C6—C71.395 (3)
O1···O5i3.152 (3)C10···H12A2.7700
O1···C1ii3.234 (3)C10···H12C2.7400
O1···O1ii3.129 (3)C10···H8vi2.9200
O1···O2iii2.636 (3)C11···H22.5800
O2···O1iii2.636 (3)C11···H8vi2.9400
O2···C42.834 (3)C12···H102.5400
O2···C53.358 (3)H1···O2iii1.8200
O2···C1iii3.318 (3)H1···C1iii2.7300
O2···O2iii3.212 (3)H1···H1iii2.5500
O3···O4iv2.672 (3)H2···C112.5800
O4···C5iv3.380 (3)H2···H112.0600
O4···O3iv2.672 (3)H2···O5vi2.9100
O4···C23.328 (3)H3···O4iv1.8500
O5···O1v3.152 (3)H3···C5iv2.7100
O1···H12Bvi2.6300H3···H3iv2.4300
O2···H4A2.1900H4A···O22.1900
O2···H1iii1.8200H4A···C12.6500
O3···H12Av2.8800H4A···C6ix3.0600
O4···H3iv1.8500H4B···C7ix3.0100
O5···H2vii2.9100H4B···C72.6000
C1···O1ii3.234 (3)H4B···C8ix2.9700
C1···O2iii3.318 (3)H4B···H72.1100
C2···C8i3.558 (3)H7···C42.5600
C2···O43.328 (3)H7···C52.8600
C4···O22.834 (3)H7···H4B2.1100
C5···O23.358 (3)H8···C2v2.8700
C5···O4iv3.380 (3)H8···C10vii2.9200
C5···C73.422 (3)H8···C11vii2.9400
C7···C53.422 (3)H8···H10vii2.4900
C8···C10vii3.596 (3)H8···H11vii2.5200
C8···C2v3.558 (3)H10···C122.5400
C10···C8vi3.596 (3)H10···H12A2.3500
C1···H4A2.6500H10···H12C2.3000
C1···H1iii2.7300H10···C8vi3.0100
C2···H8i2.8700H10···H8vi2.4900
C2···H112.6400H11···C22.6400
C4···H72.5600H11···H22.0600
C5···H3iv2.7100H11···C8vi3.1000
C5···H72.8600H11···H8vi2.5200
C6···H4Aviii3.0600H12A···C102.7700
C7···H4B2.6000H12A···H102.3500
C7···H4Bviii3.0100H12A···O3i2.8800
C8···H10vii3.0100H12B···O1vii2.6300
C8···H11vii3.1000H12C···C102.7400
C8···H4Bviii2.9700H12C···H102.3000
C9—O5—C12118.0 (2)C6—C11—C10122.8 (2)
C1—O1—H1109.00C1—C2—H2117.00
C5—O3—H3109.00C3—C2—H2117.00
O1—C1—C2112.3 (2)C3—C4—H4A109.00
O2—C1—C2125.2 (2)C3—C4—H4B109.00
O1—C1—O2122.6 (2)C5—C4—H4A109.00
C1—C2—C3126.6 (2)C5—C4—H4B109.00
C2—C3—C6121.3 (2)H4A—C4—H4B108.00
C2—C3—C4121.9 (2)C6—C7—H7119.00
C4—C3—C6116.84 (19)C8—C7—H7119.00
C3—C4—C5113.20 (18)C7—C8—H8120.00
O3—C5—C4113.9 (2)C9—C8—H8120.00
O4—C5—C4122.6 (2)C9—C10—H10120.00
O3—C5—O4123.6 (2)C11—C10—H10120.00
C7—C6—C11116.0 (2)C6—C11—H11119.00
C3—C6—C7121.8 (2)C10—C11—H11119.00
C3—C6—C11122.2 (2)O5—C12—H12A109.00
C6—C7—C8121.9 (2)O5—C12—H12B109.00
C7—C8—C9120.8 (2)O5—C12—H12C109.00
O5—C9—C10124.9 (2)H12A—C12—H12B109.00
O5—C9—C8116.2 (2)H12A—C12—H12C109.00
C8—C9—C10118.8 (2)H12B—C12—H12C109.00
C9—C10—C11119.6 (2)
C12—O5—C9—C8176.7 (2)C3—C4—C5—O3−166.2 (2)
C12—O5—C9—C10−3.4 (4)C3—C4—C5—O414.9 (3)
O1—C1—C2—C3−173.4 (2)C3—C6—C7—C8−179.3 (2)
O2—C1—C2—C35.9 (4)C11—C6—C7—C81.2 (3)
C1—C2—C3—C4−5.7 (4)C3—C6—C11—C10178.9 (2)
C1—C2—C3—C6174.8 (2)C7—C6—C11—C10−1.6 (4)
C2—C3—C4—C5−90.4 (3)C6—C7—C8—C90.5 (4)
C6—C3—C4—C589.2 (2)C7—C8—C9—O5178.0 (2)
C2—C3—C6—C7166.9 (2)C7—C8—C9—C10−1.9 (4)
C2—C3—C6—C11−13.6 (3)O5—C9—C10—C11−178.4 (2)
C4—C3—C6—C7−12.7 (3)C8—C9—C10—C111.5 (4)
C4—C3—C6—C11166.8 (2)C9—C10—C11—C60.3 (4)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) −x−1, −y+1, −z+1; (iv) −x, −y, −z+1; (v) −x, y−1/2, −z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+1, y−1/2, −z+1/2; (viii) x+1, y, z; (ix) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···O2iii0.821.822.636 (3)178
O3—H3···O4iv0.821.852.672 (3)175
C4—H4A···O20.972.192.834 (3)123

Symmetry codes: (iii) −x−1, −y+1, −z+1; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2105).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kon, G. A. R. & Nanji, E. R. (1933). J. Chem. Soc. Trans.2, 2434–2439.
  • Linstead, R. P. (1941). J. Chem. Soc. p. 457.
  • Pednekar, S., Jain, A. & Menon, K. (2004). Indian J. Heterocycl. Chem.14, 1–6.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography