PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2476.
Published online 2008 November 29. doi:  10.1107/S1600536808035952
PMCID: PMC2959922

4-{2-[3-(2-Ammonioacetamido)propanamido]ethyl}-1H-imidazol-3-ium dichloride

Abstract

Mol­ecules of the title compound, Gly-β-Ala-Histamine dihydro­chloride, C10H19N5O2 2+·2Cl, are linked by N—H(...)O and N—H(...)Cl hydrogen bonds into two-dimensional polymeric sheets parallel to the (011) plane, forming a stacked structure along the a axis. The parallel layers are also inter­linked alternately by different N—H(...)Cl hydrogen bonds, forming a three-dimensional framework.

Related literature

For the complexation abilities of oligopeptides towards different metals, see: Kozlowski et al. (1999 [triangle]); Gajda et al. (1996 [triangle]). For bond lengths and angles in other oligopeptides, see: Itoh et al. (1977 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For related literature, see: Henry et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2476-scheme1.jpg

Experimental

Crystal data

  • C10H19N5O2 2+·2Cl
  • M r = 312.20
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2476-efi1.jpg
  • a = 7.2923 (10) Å
  • b = 8.2215 (11) Å
  • c = 13.0767 (15) Å
  • α = 81.702 (11)°
  • β = 77.863 (11)°
  • γ = 69.543 (12)°
  • V = 715.98 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 110 (2) K
  • 0.30 × 0.20 × 0.12 mm

Data collection

  • Oxford Diffraction Xcalibur-Saphire2 CCD diffractometer
  • Absorption correction: numerical (ABSORB; DeTitta, 1985 [triangle]) T min = 0.874, T max = 0.952
  • 12727 measured reflections
  • 3307 independent reflections
  • 1798 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.111
  • S = 0.97
  • 3307 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.51 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CryslisCCD (Oxford Diffraction, 2003 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035952/cs2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035952/cs2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Technical support (NMR, ESI-MS and X-ray measurements) from Université Henry Poincaré, Nancy 1, is gratefully acknowledged.

supplementary crystallographic information

Comment

Serum albumin (SA) is the most abundant protein in human, and considered as the trace metal carrier between tissues and blood. To mimicking the coordination site in SA many oligopeptides have been synthesized and their complexation abilities towards different metals (Cu, Ni, Co, Mn, etc.) have been studied (Kozlowski et al., 1999, Gajda et al., 1996). We report here the molecular structure of the pseudo-tripeptide Glycyl-β-Alanyl-Histamine dihydrochloride (I) as a potential model compound which was synthesized in two steps from histamine hydrochloride, BOC-β-Alanine (BOC: N-(tert-butoxycarbonyl)) and BOC-Glycine. The asymmetric unit consists of the bicationic form of the pseudo-tripeptide and two chloride anions (Fig.1). The organic cation is essentially planar (maximum deviation from the mean plane is 0.102 (4) Å). The bond distances and angles of the peptide bonds and the protonated imidazolium rings are close to the values measured for other oligopeptides (Itoh et al., 1977). Ions in the title salt are interlinked by two types of hydrogen bridges in the crystal. The N2 and N3 nitrogen atoms form strong N—H···O hydrogen bonds with O1i and O2i carbonyl oxygen atoms of neighbouring pseudo-tripeptide molecules, respectively [symmetry codes: (i) x, y + 1, z], giving an R22(14) hydrogen-bonded ring motif (Bernstein et al., 1995). The N1, N4 and N5 nitrogen atoms form N—H···Cl1 hydrogen bonds with Cl1, Cl1ii and Cl1iv, respectively [symmetry codes: (ii) x, y - 1, z + 1 and (iv) -x + 1, -y + 1, -z + 1], and are engaged in two other cyclic patterns (R23(13) and R35(22)). This complex hydrogen bond framework gives a two-dimensional polymer parallel to the (011) plane (Fig.2). Layers are linked along the a axis and Cl1 and Cl2 atoms are alternatively involved. The distances between the two layers are 2.914 (4) Å and 3.747 (4) Å (N5···Cl1···N5 and N5···Cl2···N5, respectively) (Fig. 3).

Experimental

The title compound was synthesized in two steps. First, β-Ala-histamine was prepared from N-(tert-butoxycarbonyl)-β-alanine and histamine dihydrochloride according to the procedure described earlier (Henry et al., 1993). Using the same method in the second step, the title compound was obtained from the reaction of N-(tert-butoxycarbonyl)-glycine on β-Ala-histamine. Suitable crystals were obtained by slow diffusion of ethyl acetate into the methanolic solution of the title compound.

Refinement

All H atoms bonded to C and N atoms were initially located from difference Fourier maps. Nevertheless, all the H atoms were constrained in a riding motion approximation with fixed bond lengths and Uiso parameters: Caryl–H = 0.95 Å, with Uiso(H) = 1.2Ueq(C); Cmethylene–H = 0.99 Å, with Uiso(H) = 1.2Ueq(C); N–H = 0.88 Å, with Uiso(H) = 1.2Ueq(N); Namine–H = 0.91 Å, with Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
The molecular structure of the title salt with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of (I), viewed along the a axis, showing the N—H···O and N—H···Cl1 hydrogen bonds. H atoms have been omitted for clarity.
Fig. 3.
A view of the crystal packing of (I), showing the alternation of N5—H···Cl1 and N5—H···Cl2 hydrogen bonds (dashed lines) between two layers along the a axis. H atoms have been omitted for ...

Crystal data

C10H19N5O22+·2ClZ = 2
Mr = 312.20F000 = 328
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.2923 (10) ÅCell parameters from 12727 reflections
b = 8.2215 (11) Åθ = 2.7–29.2º
c = 13.0767 (15) ŵ = 0.46 mm1
α = 81.702 (11)ºT = 110 (2) K
β = 77.863 (11)ºPrism, colourless
γ = 69.543 (12)º0.30 × 0.20 × 0.12 mm
V = 715.98 (16) Å3

Data collection

Oxford Diffraction Xcalibur-Saphire2 CCD diffractometer3307 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.061
T = 110(2) Kθmax = 29.2º
ω scanθmin = 2.7º
Absorption correction: numerical(ABSORB; DeTitta, 1985)h = −9→9
Tmin = 0.874, Tmax = 0.952k = −11→11
12727 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.111  w = 1/[σ2(Fo2) + (0.0489P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3307 reflectionsΔρmax = 0.51 e Å3
172 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.7290 (4)0.3622 (3)0.54649 (15)0.0302 (6)
O20.7180 (3)−0.1826 (2)0.77310 (14)0.0255 (5)
N10.7705 (4)1.0791 (3)0.25403 (18)0.0255 (6)
H1'0.77201.09030.18590.031*
N20.7640 (4)1.1387 (3)0.40854 (18)0.0230 (6)
H2'0.76141.19610.46090.028*
N30.7314 (4)0.5944 (3)0.61436 (17)0.0217 (6)
H3'0.72890.64430.67010.026*
N40.7164 (4)0.0643 (3)0.83121 (17)0.0205 (6)
H4'0.71730.11610.88540.025*
N50.7507 (4)−0.3688 (3)0.95958 (18)0.0223 (6)
H5C'0.7717−0.42111.02430.033*
H5B'0.8438−0.43290.90970.033*
H5A'0.6275−0.36100.95050.033*
C10.7671 (5)1.2013 (4)0.3094 (2)0.0271 (7)
H10.76681.31520.28290.033*
C20.7655 (4)0.9685 (3)0.4167 (2)0.0189 (7)
C30.7717 (5)0.9304 (4)0.3183 (2)0.0222 (7)
H30.77590.82280.29770.027*
C40.7614 (5)0.8637 (4)0.5201 (2)0.0217 (7)
H4B0.64700.92880.57090.026*
H4A0.88420.84650.54730.026*
C50.7448 (5)0.6879 (3)0.5113 (2)0.0201 (7)
H5B0.62510.70410.48140.024*
H5A0.86260.61950.46380.024*
C60.7229 (4)0.4335 (4)0.6247 (2)0.0217 (7)
C70.7099 (5)0.3428 (3)0.7336 (2)0.0195 (7)
H7B0.58990.41190.77960.023*
H7A0.82760.33330.76340.023*
C80.7003 (5)0.1626 (3)0.7299 (2)0.0203 (7)
H8B0.57300.17300.70970.024*
H8A0.80980.09980.67610.024*
C90.7297 (4)−0.1029 (4)0.8434 (2)0.0190 (7)
C100.7655 (5)−0.1917 (3)0.9503 (2)0.0202 (7)
H10B0.8992−0.19980.96070.024*
H10A0.6660−0.12231.00540.024*
Cl21.15091 (12)−0.57052 (9)0.81161 (5)0.0251 (2)
Cl10.71393 (12)1.24682 (9)0.03128 (5)0.0240 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0512 (17)0.0260 (12)0.0199 (11)−0.0198 (12)−0.0059 (10)−0.0041 (9)
O20.0408 (15)0.0195 (11)0.0184 (11)−0.0124 (11)−0.0042 (10)−0.0036 (9)
N10.0291 (17)0.0326 (15)0.0148 (13)−0.0124 (13)−0.0004 (11)−0.0010 (11)
N20.0277 (16)0.0206 (14)0.0224 (14)−0.0095 (13)−0.0025 (12)−0.0060 (11)
N30.0330 (17)0.0177 (13)0.0162 (12)−0.0125 (12)0.0004 (11)−0.0027 (10)
N40.0304 (16)0.0170 (13)0.0163 (12)−0.0106 (12)−0.0030 (11)−0.0030 (10)
N50.0267 (16)0.0202 (13)0.0191 (13)−0.0084 (12)−0.0010 (11)−0.0010 (10)
C10.0218 (19)0.0225 (17)0.0353 (19)−0.0076 (15)−0.0070 (15)0.0070 (15)
C20.0193 (18)0.0114 (15)0.0254 (16)−0.0051 (13)−0.0008 (13)−0.0032 (12)
C30.0227 (19)0.0222 (17)0.0223 (16)−0.0085 (15)−0.0035 (14)−0.0018 (13)
C40.0229 (19)0.0242 (16)0.0186 (15)−0.0093 (15)−0.0029 (13)−0.0009 (13)
C50.0232 (18)0.0178 (15)0.0180 (15)−0.0053 (14)−0.0033 (13)−0.0019 (12)
C60.0210 (19)0.0240 (17)0.0202 (16)−0.0080 (15)−0.0023 (13)−0.0023 (13)
C70.0255 (19)0.0165 (15)0.0151 (15)−0.0070 (14)−0.0011 (13)−0.0008 (12)
C80.0228 (19)0.0217 (16)0.0186 (15)−0.0100 (14)−0.0031 (13)−0.0026 (12)
C90.0128 (17)0.0208 (16)0.0230 (16)−0.0062 (14)0.0002 (13)−0.0035 (13)
C100.0221 (18)0.0154 (15)0.0234 (16)−0.0055 (14)−0.0045 (14)−0.0033 (12)
Cl20.0295 (5)0.0243 (4)0.0217 (4)−0.0097 (4)−0.0006 (3)−0.0055 (3)
Cl10.0291 (5)0.0241 (4)0.0215 (4)−0.0114 (4)−0.0050 (3)−0.0022 (3)

Geometric parameters (Å, °)

O1—C61.235 (3)C1—H10.9500
O2—C91.237 (3)C2—C31.356 (4)
N1—C11.311 (4)C2—C41.495 (4)
N1—C31.378 (3)C3—H30.9500
N1—H1'0.8800C4—C51.514 (4)
N2—C11.322 (4)C4—H4B0.9900
N2—C21.384 (3)C4—H4A0.9900
N2—H2'0.8800C5—H5B0.9900
N3—C61.333 (3)C5—H5A0.9900
N3—C51.454 (3)C6—C71.510 (4)
N3—H3'0.8800C7—C81.515 (3)
N4—C91.332 (3)C7—H7B0.9900
N4—C81.453 (3)C7—H7A0.9900
N4—H4'0.8800C8—H8B0.9900
N5—C101.483 (3)C8—H8A0.9900
N5—H5C'0.9100C9—C101.510 (4)
N5—H5B'0.9100C10—H10B0.9900
N5—H5A'0.9100C10—H10A0.9900
C1—N1—C3109.9 (2)H4B—C4—H4A107.9
C1—N1—H1'125.0N3—C5—C4109.9 (2)
C3—N1—H1'125.0N3—C5—H5B109.7
C1—N2—C2109.1 (2)C4—C5—H5B109.7
C1—N2—H2'125.4N3—C5—H5A109.7
C2—N2—H2'125.4C4—C5—H5A109.7
C6—N3—C5120.2 (2)H5B—C5—H5A108.2
C6—N3—H3'119.9O1—C6—N3120.1 (3)
C5—N3—H3'119.9O1—C6—C7122.2 (2)
C9—N4—C8121.1 (2)N3—C6—C7117.8 (2)
C9—N4—H4'119.4C6—C7—C8110.2 (2)
C8—N4—H4'119.4C6—C7—H7B109.6
C10—N5—H5C'109.5C8—C7—H7B109.6
C10—N5—H5B'109.5C6—C7—H7A109.6
H5C'—N5—H5B'109.5C8—C7—H7A109.6
C10—N5—H5A'109.5H7B—C7—H7A108.1
H5C'—N5—H5A'109.5N4—C8—C7110.9 (2)
H5B'—N5—H5A'109.5N4—C8—H8B109.5
N1—C1—N2108.3 (2)C7—C8—H8B109.5
N1—C1—H1125.9N4—C8—H8A109.5
N2—C1—H1125.9C7—C8—H8A109.5
C3—C2—N2106.4 (2)H8B—C8—H8A108.0
C3—C2—C4132.2 (2)O2—C9—N4123.5 (2)
N2—C2—C4121.4 (2)O2—C9—C10121.6 (2)
C2—C3—N1106.3 (2)N4—C9—C10114.9 (2)
C2—C3—H3126.9N5—C10—C9110.0 (2)
N1—C3—H3126.9N5—C10—H10B109.7
C2—C4—C5111.9 (2)C9—C10—H10B109.7
C2—C4—H4B109.2N5—C10—H10A109.7
C5—C4—H4B109.2C9—C10—H10A109.7
C2—C4—H4A109.2H10B—C10—H10A108.2
C5—C4—H4A109.2

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1'···Cl10.882.273.083 (4)153
N2—H2'···O1i0.881.812.670 (4)165
N3—H3'···O2i0.882.072.927 (4)165
N4—H4'···Cl1ii0.882.313.192 (4)178
N5—H5C'···Cl2iii0.912.323.152 (4)152
N5—H5B'···Cl20.912.323.191 (4)160
N5—H5A'···Cl1iv0.912.313.161 (4)156

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z+1; (iii) −x+2, −y−1, −z+2; (iv) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2096).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • DeTitta, G. T. (1985). J. Appl. Cryst.18, 75–79.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gajda, T., Henry, B., Aubry, A. & Delpuech, J.-J. (1996). Inorg. Chem.35, 586–593.
  • Henry, B., Gajda, T., Selve, C. & Delpuech, J.-J. (1993). Amino Acids5, 113–114.
  • Itoh, H., Yamane, T., Ashida, T. & Kakudo, M. (1977). Acta Cryst. B33, 2959–2961.
  • Kozlowski, H., Bal, W., Dyba, M. & Kowalik-Jankowska, T. (1999). Coord. Chem. Rev.184, 319–346.
  • Oxford Diffraction (2003). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Wroclaw, Poland.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography