PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1497.
Published online 2008 November 8. doi:  10.1107/S1600536808035289
PMCID: PMC2959917

Bis{2-meth­oxy-6-[(3-methoxy­prop­yl)imino­meth­yl]phenolato-κ2 N,O 1}copper(II)

Abstract

The title complex, [Cu(C12H16NO3)2], adopts a distorted square-planar coordination geometry with the CuII ion situated on a crystallographic inversion center. The two Schiff base ligands are coordinated in a trans fashion. In the crystal structure, non-classical inter­molecular C—H(...)O hydrogen bonds involving the ether O atoms link the Schiff base mol­ecules into a two-dimensional network parallel to (101).

Related literature

For similar copper(II) structures with Schiff base ligands: see: Akitsu & Einaga (2004 [triangle]); Bluhm et al. (2003 [triangle]); Castiñeiras et al. (1990 [triangle]); Costamagna et al. (1998 [triangle]); King et al. (1973 [triangle]); Lacroix et al. (2004 [triangle]); Zhang et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1497-scheme1.jpg

Experimental

Crystal data

  • [Cu(C12H16NO3)2]
  • M r = 508.06
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1497-efi1.jpg
  • a = 11.2189 (9) Å
  • b = 10.7004 (8) Å
  • c = 9.5002 (7) Å
  • β = 96.912 (1)°
  • V = 1132.18 (15) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.01 mm−1
  • T = 100 (2) K
  • 0.50 × 0.50 × 0.40 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.614, T max = 0.668
  • 6343 measured reflections
  • 2298 independent reflections
  • 2065 reflections with I > 2σ(I)
  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.079
  • S = 1.09
  • 2298 reflections
  • 153 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035289/lh2719sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035289/lh2719Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Science Council of Taiwan for financial support.

supplementary crystallographic information

Comment

The Schiff base (E)-2-methoxy-6-[(3-methoxypropyl)iminomethyl]phenol reacts with copper(II) nitrate in methanol to form the title complex. In situ deprotonation of the phenolic hydrogen occurred leading to formation of the O/N-bidentate ligand. The title complex consists of two bidentate ligands coordinating in a trans fashion. It adopts a square-planar coordination geometry with the Cu atom located on a crystallographic inversion center. Schiff base Cu(II) complexes similar to the title complex have been reported in the literature (Akitsu & Einaga, 2004; Bluhm et al., 2003; Castiñeiras et al., 1990; Costamagna et al., 1998; King et al., 1973; Lacroix et al., 2004; Zhang et al., 2001).

Both intramolecular and intermolecular non-classical H-bonds of the type C-H···O exist (Table 1). The intermolecular H-bonds link the complex into a two-dimensional network.

Experimental

Synthesis of (E)-2-methoxy-6-((3-methoxypropylimino)methyl)phenol: The compound was synthesized by the condensation reaction between O-vaniline and NH2(CH2)3OMe in methanol. After complete removal of the solvent, the resulting yellow liquid was used without purification.

Synthesis of the title complex: A methanolic solution of Cu(NO3)2 (1 mmol, 188 mg) and (E)-2-methoxy-6-((3-methoxypropylimino)methyl)phenol (2 mmol, 446 mg) was stirred for 30 min. The solution was then kept for 7 days to yield crystals suitable for X-ray diffraction study.

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with Caryl—H = 0.95, Cmethyl—H = 0.98, Cmethylene—H = 0.99, Cmethine—H = 0.95 Å while Uiso(H) = 1.5Ueq(C) for the methyl H atoms and Uiso(H) = 1.2Ueq(C) for all the other H atoms.

Figures

Fig. 1.
The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by -x, 1 - y, 1 - z.
Fig. 2.
A packing diagram of the title compound along the c axis. Hyrogen bonds are shown as dashed lines.

Crystal data

[Cu(C12H16N1O3)2]F000 = 534
Mr = 508.06Dx = 1.490 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3703 reflections
a = 11.2189 (9) Åθ = 2.6–26.4º
b = 10.7004 (8) ŵ = 1.01 mm1
c = 9.5002 (7) ÅT = 100 (2) K
β = 96.9120 (10)ºBlock, black
V = 1132.18 (15) Å30.50 × 0.50 × 0.40 mm
Z = 2

Data collection

Bruker SMART APEXII diffractometer2065 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.032
T = 100(2) Kθmax = 26.4º
ω scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→7
Tmin = 0.614, Tmax = 0.668k = −13→12
6343 measured reflectionsl = −11→11
2298 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.079  w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0531P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2298 reflectionsΔρmax = 0.31 e Å3
153 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.50000.50000.01161 (11)
N10.06486 (12)0.67268 (12)0.54175 (13)0.0124 (3)
O1−0.10464 (10)0.55690 (11)0.34077 (12)0.0157 (3)
O2−0.26520 (10)0.57869 (11)0.11946 (12)0.0168 (3)
O30.38383 (10)0.83717 (11)0.73181 (13)0.0203 (3)
C1−0.12843 (14)0.67057 (15)0.29658 (16)0.0123 (3)
C2−0.21677 (14)0.68788 (15)0.17655 (16)0.0133 (3)
C3−0.24800 (15)0.80571 (16)0.12650 (17)0.0146 (3)
H3−0.30840.81530.04810.018*
C4−0.19103 (15)0.91184 (16)0.19081 (17)0.0160 (4)
H4−0.21310.99300.15640.019*
C5−0.10354 (15)0.89779 (15)0.30333 (17)0.0146 (3)
H5−0.06390.96950.34530.018*
C6−0.07147 (15)0.77820 (15)0.35771 (16)0.0128 (3)
C70.02158 (15)0.77112 (16)0.47516 (16)0.0134 (3)
H70.05570.84860.50810.016*
C8−0.35395 (15)0.59005 (17)−0.00057 (17)0.0185 (4)
H8A−0.42480.63250.02750.028*
H8B−0.37670.5067−0.03720.028*
H8C−0.32140.6388−0.07440.028*
C90.16306 (14)0.69566 (15)0.65644 (16)0.0136 (3)
H9A0.15120.64290.73920.016*
H9B0.16130.78420.68620.016*
C100.28466 (15)0.66641 (16)0.60836 (17)0.0166 (4)
H10A0.29020.57560.59040.020*
H10B0.29190.71070.51830.020*
C110.38687 (15)0.70517 (15)0.71811 (18)0.0161 (4)
H11A0.37810.66520.81030.019*
H11B0.46450.67870.68810.019*
C120.47976 (15)0.88352 (17)0.82805 (18)0.0214 (4)
H12A0.47760.84440.92100.032*
H12B0.47190.97430.83690.032*
H12C0.55620.86390.79290.032*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01075 (17)0.01035 (17)0.01270 (16)−0.00026 (10)−0.00282 (11)0.00036 (10)
N10.0102 (7)0.0140 (7)0.0128 (6)−0.0004 (6)0.0000 (6)−0.0016 (6)
O10.0166 (6)0.0117 (6)0.0170 (6)0.0001 (5)−0.0057 (5)0.0011 (5)
O20.0164 (6)0.0158 (6)0.0163 (6)−0.0019 (5)−0.0061 (5)−0.0006 (5)
O30.0167 (6)0.0128 (6)0.0286 (7)−0.0022 (5)−0.0085 (5)0.0003 (5)
C10.0108 (8)0.0133 (8)0.0133 (7)0.0012 (7)0.0033 (6)0.0004 (6)
C20.0116 (8)0.0149 (8)0.0138 (7)−0.0009 (7)0.0027 (7)−0.0009 (6)
C30.0114 (8)0.0191 (9)0.0130 (7)0.0020 (7)0.0002 (6)0.0032 (7)
C40.0171 (9)0.0135 (8)0.0176 (8)0.0024 (7)0.0029 (7)0.0030 (7)
C50.0165 (9)0.0108 (8)0.0169 (8)−0.0004 (7)0.0032 (7)−0.0011 (7)
C60.0115 (8)0.0141 (8)0.0132 (8)0.0013 (7)0.0029 (7)0.0003 (6)
C70.0136 (8)0.0120 (8)0.0149 (8)−0.0014 (6)0.0024 (7)−0.0026 (6)
C80.0157 (9)0.0219 (9)0.0166 (8)−0.0013 (7)−0.0039 (7)0.0006 (7)
C90.0115 (8)0.0143 (8)0.0140 (8)−0.0008 (7)−0.0025 (6)−0.0021 (6)
C100.0146 (9)0.0172 (8)0.0176 (8)−0.0001 (7)0.0000 (7)−0.0027 (7)
C110.0136 (8)0.0145 (8)0.0198 (8)0.0005 (7)0.0002 (7)−0.0012 (7)
C120.0175 (9)0.0200 (9)0.0256 (9)−0.0055 (7)−0.0022 (8)−0.0030 (8)

Geometric parameters (Å, °)

Cu1—O1i1.9000 (11)C5—C61.410 (2)
Cu1—O11.9000 (11)C5—H50.9500
Cu1—N1i2.0079 (13)C6—C71.435 (2)
Cu1—N12.0079 (13)C7—H70.9500
N1—C71.293 (2)C8—H8A0.9800
N1—C91.474 (2)C8—H8B0.9800
O1—C11.3038 (19)C8—H8C0.9800
O2—C21.3724 (19)C9—C101.522 (2)
O2—C81.4258 (19)C9—H9A0.9900
O3—C121.415 (2)C9—H9B0.9900
O3—C111.419 (2)C10—C111.512 (2)
C1—C61.408 (2)C10—H10A0.9900
C1—C21.430 (2)C10—H10B0.9900
C2—C31.378 (2)C11—H11A0.9900
C3—C41.406 (2)C11—H11B0.9900
C3—H30.9500C12—H12A0.9800
C4—C51.370 (2)C12—H12B0.9800
C4—H40.9500C12—H12C0.9800
O1i—Cu1—O1180.0C6—C7—H7115.9
O1i—Cu1—N1i92.11 (5)O2—C8—H8A109.5
O1—Cu1—N1i87.89 (5)O2—C8—H8B109.5
O1i—Cu1—N187.89 (5)H8A—C8—H8B109.5
O1—Cu1—N192.11 (5)O2—C8—H8C109.5
N1i—Cu1—N1180.00 (7)H8A—C8—H8C109.5
C7—N1—C9115.41 (14)H8B—C8—H8C109.5
C7—N1—Cu1123.18 (11)N1—C9—C10111.16 (12)
C9—N1—Cu1121.36 (10)N1—C9—H9A109.4
C1—O1—Cu1129.66 (11)C10—C9—H9A109.4
C2—O2—C8116.66 (13)N1—C9—H9B109.4
C12—O3—C11112.53 (13)C10—C9—H9B109.4
O1—C1—C6124.41 (15)H9A—C9—H9B108.0
O1—C1—C2118.23 (14)C11—C10—C9111.67 (13)
C6—C1—C2117.35 (14)C11—C10—H10A109.3
O2—C2—C3124.78 (15)C9—C10—H10A109.3
O2—C2—C1114.10 (14)C11—C10—H10B109.3
C3—C2—C1121.12 (15)C9—C10—H10B109.3
C2—C3—C4120.37 (15)H10A—C10—H10B107.9
C2—C3—H3119.8O3—C11—C10108.16 (14)
C4—C3—H3119.8O3—C11—H11A110.1
C5—C4—C3119.73 (16)C10—C11—H11A110.1
C5—C4—H4120.1O3—C11—H11B110.1
C3—C4—H4120.1C10—C11—H11B110.1
C4—C5—C6120.85 (16)H11A—C11—H11B108.4
C4—C5—H5119.6O3—C12—H12A109.5
C6—C5—H5119.6O3—C12—H12B109.5
C1—C6—C5120.53 (15)H12A—C12—H12B109.5
C1—C6—C7121.93 (15)O3—C12—H12C109.5
C5—C6—C7117.53 (15)H12A—C12—H12C109.5
N1—C7—C6128.21 (16)H12B—C12—H12C109.5
N1—C7—H7115.9
O1i—Cu1—N1—C7−173.21 (13)C3—C4—C5—C6−1.4 (2)
O1—Cu1—N1—C76.79 (13)O1—C1—C6—C5−179.61 (15)
O1i—Cu1—N1—C94.07 (11)C2—C1—C6—C51.5 (2)
O1—Cu1—N1—C9−175.93 (11)O1—C1—C6—C71.2 (3)
N1i—Cu1—O1—C1172.75 (14)C2—C1—C6—C7−177.67 (14)
N1—Cu1—O1—C1−7.25 (14)C4—C5—C6—C10.4 (2)
Cu1—O1—C1—C64.5 (2)C4—C5—C6—C7179.60 (14)
Cu1—O1—C1—C2−176.60 (10)C9—N1—C7—C6178.39 (15)
C8—O2—C2—C30.2 (2)Cu1—N1—C7—C6−4.2 (2)
C8—O2—C2—C1179.96 (13)C1—C6—C7—N1−1.1 (3)
O1—C1—C2—O2−1.3 (2)C5—C6—C7—N1179.74 (16)
C6—C1—C2—O2177.71 (13)C7—N1—C9—C10−101.17 (16)
O1—C1—C2—C3178.53 (14)Cu1—N1—C9—C1081.35 (15)
C6—C1—C2—C3−2.5 (2)N1—C9—C10—C11172.66 (13)
O2—C2—C3—C4−178.62 (14)C12—O3—C11—C10−177.34 (13)
C1—C2—C3—C41.6 (2)C9—C10—C11—O3−64.55 (18)
C2—C3—C4—C50.4 (2)

Symmetry codes: (i) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8B···O3ii0.982.583.476 (2)151
C9—H9A···O1i0.992.312.782 (2)108
C9—H9B···O30.992.552.918 (2)102

Symmetry codes: (ii) −x, y−1/2, −z+1/2; (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2719).

References

  • Akitsu, T. & Einaga, Y. (2004). Acta Cryst. E60, m436–m438.
  • Bluhm, M. E., Ciesielski, M., Görls, H., Walter, O. & Döring, M. (2003). Inorg. Chem.42, 8878–8885. [PubMed]
  • Bruker (2004). APEX2 andSAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Castiñeiras, A., Hiller, W., Strähle, J., Romero, J., Bastida, R. & Sousa, A. (1990). Acta Cryst. C46, 770–772.
  • Costamagna, J., Caruso, F., Vargas, J. & Manriquez, V. (1998). Inorg. Chim. Acta, 267, 151–158.
  • King, A. W., Swann, D. A. & Waters, T. N. (1973). J. Chem. Soc. Dalton Trans. pp. 1819–1822.
  • Lacroix, P. G., Averseng, F., Malfant, I. & Nakatani, K. (2004). Inorg. Chim. Acta, 357, 3825–3835.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, L. Z., Bu, P.-Y., Wang, L.-J. & Cheng, P. (2001). Acta Cryst. C57, 1166–1167. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography