PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2274–o2275.
Published online 2008 November 8. doi:  10.1107/S1600536808035617
PMCID: PMC2959916

3-Hydr­oxy-4-methoxy­benzaldehyde thio­semicarbazone hemihydrate

Abstract

The asymmetric unit of the title compound, C9H11N3O2S·0.5H2O, comprises two crystallograpically independent thio­semicarbazone mol­ecules (A and B) and a water mol­ecule of crystallization. In each of the thio­semicarbazone mol­ecules, intra­molecular O—H(...)O and N—H(...)N hydrogen bonds form five-membered rings, producing S(5) ring motifs. Inter­molecular O—H(...)S and N—H(...)O inter­actions between mol­ecule B and the water mol­ecule form a six-membered ring, producing an R 2 2(6) ring motif. Inter­molecular N—H(...)S hydrogen bonds form dimers involving pairs of both A and B mol­ecules, which form R 2 2(8) ring motifs. The angles between the aromatic ring and thio­urea unit in the two mol­ecules are 0.80 (6) and 3.28 (5)°, which proves that each mol­ecule is fairly planar. The crystal structure is stabilized by inter­molecular O—H(...)S (×2), O—H(...)O, N—H(...)S (×2) and N—H(...)O (×2) hydrogen bonds and C—H(...)O (×2) contacts to form a three-dimensional network.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For background to thio­semicarbazones, see: Al-Awadi et al. (2008 [triangle]); Kizilcikli et al. (2004 [triangle]); Mishra et al. (2006 [triangle]). For a related structure, see: Ferrari et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2274-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S·0.5H2O
  • M r = 234.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2274-efi1.jpg
  • a = 10.5288 (2) Å
  • b = 10.7045 (2) Å
  • c = 11.8154 (2) Å
  • α = 68.438 (1)°
  • β = 68.917 (1)°
  • γ = 68.114 (1)°
  • V = 1110.28 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 100.0 (1) K
  • 0.45 × 0.32 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.884, T max = 0.973
  • 45467 measured reflections
  • 10830 independent reflections
  • 8078 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.116
  • S = 1.10
  • 10830 reflections
  • 314 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.90 e Å−3
  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808035617/tk2321sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035617/tk2321Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

H-KF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. This work was supported by the Department of Science and Technology (DST), Government of India (grant No. SR/S2/LOP-17/2006).

supplementary crystallographic information

Comment

Intriguing chelating patterns, biomedical properties, structural diversity and ion-sensing abilities (Al-Awadi et al., 2008; Kizilcikli et al., 2004; Mishra et al., 2006) have made thiosemicarbazones a class of compounds of immense importance. We report herein the crystal structure of the title compound, (I).

The bond lengths and angles in (I), Fig. 1, agree with those in a related structure (Ferrari et al. 2001). Intramolecular O—H···O and N—H···N hydrogen bonds, in each molecule of A and B, form five-membered rings, producing S(5) ring motifs (Bernstein et al. 1995). The angle between the aromatic ring and the thiourea unit in each of molecule A and B is 0.80 (6) and 3.28 (5)°, respectively, which indicates each molecule is almost planar. Intermolecular O—H···S and N—H···O interactions between molecule B and the water molecule form a six-membered ring, producing a R22(6) ring motif. Intermolecular N—H···S interactions for pairs of molecule A and similarly for pairs of molecules B lead to the formation of dimers with R22(8) ring motifs (Bernstein et al. 1995). The crystal structure is stabilized by intermolecular O—H···S, O—H···O, N—H···S (x 2) and N—H···O (x 2) hydrogen bonds and C—H···O (x 2) contacts, see Table 1. In the 3-D crystal structure the water molecules link neghbouring molecules to form 1-D chains along the b-axis of the unit cell (Fig. 2).

Experimental

3-Hydroxy-4-methoxy benzaldehyde (0.075 mol) and thiosemicarbazone (0.05 mol) were dissolved in a sufficient volume of methanol and the mixture was refluxed for 4 h until the whole volume of the mixture attains a pale-yellow colour. The mixture was then allowed to cool, poured into a beaker and kept aside for evaporation. The resulting crude sample was recrystallized twice from methanol. Pure light-yellow crystals of (I) were then obtained.

Refinement

The H atoms of the water molecule were located from the difference Fourier map and constrained to refine on the parent atom with O—H = 0.85 - 0.86 Å, and with U(H) set to 1.5 times Ueq(O). The H atoms bound to the remaining O and N atoms were located from a difference Fourier map and refined freely, see Table 1 for distances. The C-bound H atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93 - 0.96 Å, and with U(H) set to 1.2 - 1.5 times Ueq(C). The rotating group model was applied to the methyl groups.

Figures

Fig. 1.
The molecular structure of (I) showing 50% probability displacement ellipsoids and the atomic numbering. Dashed lines show intramolecular hydrogen bonds.
Fig. 2.
Partial crystal packing in (I), viewed down the c-axis, showing 1-D chains mediated by the water molecule along the b-axis. Intra- and inter-molecular interactions are drawn as dashed lines.

Crystal data

C9H11N3O2S·0.5H2OZ = 4
Mr = 234.28F000 = 492
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.5288 (2) ÅCell parameters from 9992 reflections
b = 10.7045 (2) Åθ = 2.5–36.3º
c = 11.8154 (2) ŵ = 0.28 mm1
α = 68.438 (1)ºT = 100.0 (1) K
β = 68.917 (1)ºPlate, light yellow
γ = 68.114 (1)º0.45 × 0.32 × 0.10 mm
V = 1110.28 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer10830 independent reflections
Radiation source: fine-focus sealed tube8078 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.040
T = 100.0(1) Kθmax = 36.6º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −17→17
Tmin = 0.884, Tmax = 0.973k = −17→17
45467 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116  w = 1/[σ2(Fo2) + (0.0547P)2 + 0.1125P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
10830 reflectionsΔρmax = 0.90 e Å3
314 parametersΔρmin = −0.63 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1A0.96703 (3)0.48913 (3)0.19973 (2)0.01747 (6)
O1A0.51514 (8)0.27402 (9)−0.26347 (7)0.02001 (15)
O2A0.30169 (8)0.21411 (9)−0.07261 (7)0.01997 (15)
N1A0.71556 (9)0.38149 (9)0.09845 (8)0.01559 (15)
N2A0.82582 (9)0.42443 (9)0.09440 (8)0.01634 (15)
N3A0.72833 (10)0.41202 (10)0.30323 (9)0.01863 (16)
C1A0.60929 (10)0.32375 (11)−0.13430 (9)0.01602 (17)
H1AA0.68320.3453−0.20350.019*
C2A0.50692 (10)0.28289 (11)−0.14735 (9)0.01535 (16)
C3A0.39489 (10)0.25053 (10)−0.04411 (9)0.01556 (16)
C4A0.38655 (10)0.25938 (11)0.07304 (9)0.01677 (17)
H4AA0.31260.23760.14210.020*
C5A0.48947 (10)0.30101 (11)0.08621 (9)0.01594 (17)
H5AA0.48350.30780.16430.019*
C6A0.60192 (10)0.33279 (10)−0.01652 (9)0.01479 (16)
C7A0.71238 (10)0.37674 (11)−0.00763 (9)0.01642 (17)
H7AA0.78190.4018−0.07990.020*
C8A0.83058 (10)0.43992 (10)0.20092 (9)0.01451 (16)
C9A0.18681 (12)0.17340 (13)0.02852 (11)0.0237 (2)
H9AA0.12610.1552−0.00410.036*
H9AB0.13370.24730.06880.036*
H9AC0.22360.09040.08860.036*
S1B0.47040 (3)0.21971 (3)0.47447 (3)0.02029 (6)
O1B0.02689 (9)−0.32448 (8)0.32698 (8)0.02095 (15)
O2B−0.18810 (8)−0.11332 (8)0.24783 (7)0.01905 (14)
N1B0.20913 (9)0.10835 (9)0.38890 (8)0.01597 (15)
N2B0.31944 (9)0.10741 (9)0.42677 (8)0.01711 (15)
N3B0.23043 (10)0.34380 (10)0.39796 (9)0.02002 (17)
C1B0.10696 (10)−0.16764 (10)0.36407 (9)0.01606 (17)
H1BA0.1780−0.24270.39420.019*
C2B0.01113 (10)−0.19098 (10)0.32466 (9)0.01548 (16)
C3B−0.09831 (10)−0.07809 (10)0.28235 (9)0.01488 (16)
C4B−0.10910 (10)0.05636 (10)0.27978 (9)0.01613 (17)
H4BA−0.18220.13100.25260.019*
C5B−0.01134 (10)0.07990 (10)0.31756 (9)0.01574 (16)
H5BA−0.01880.17010.31520.019*
C6B0.09823 (10)−0.03191 (10)0.35910 (9)0.01469 (16)
C7B0.20549 (10)−0.01329 (10)0.39715 (9)0.01585 (17)
H7BA0.2733−0.09170.42830.019*
C8B0.32919 (10)0.22659 (11)0.43096 (9)0.01633 (17)
C9B−0.30345 (11)−0.00063 (12)0.20815 (11)0.0222 (2)
H9BA−0.3624−0.03650.18940.033*
H9BB−0.26700.06580.13420.033*
H9BC−0.35830.04440.27430.033*
O1W0.34588 (8)0.53871 (8)0.45766 (7)0.02077 (15)
H2W10.39110.45240.46110.031*
H1W10.39450.59020.39810.031*
H2NA0.8880 (18)0.4499 (18)0.0167 (16)0.037 (4)*
H2NB0.3777 (17)0.0311 (18)0.4514 (15)0.032 (4)*
H3NA0.6636 (16)0.3855 (16)0.3001 (14)0.025 (4)*
H3NB0.7234 (15)0.4214 (16)0.3744 (14)0.025 (4)*
H3NC0.2333 (17)0.4172 (18)0.4051 (15)0.033 (4)*
H3ND0.1594 (16)0.3384 (16)0.3798 (14)0.026 (4)*
H1OA0.4418 (18)0.2630 (18)−0.2614 (16)0.036 (4)*
H1OB−0.0391 (18)−0.3255 (18)0.3063 (16)0.037 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.01803 (11)0.02175 (12)0.01820 (11)−0.01016 (9)−0.00575 (8)−0.00572 (9)
O1A0.0214 (3)0.0294 (4)0.0160 (3)−0.0126 (3)−0.0040 (3)−0.0087 (3)
O2A0.0179 (3)0.0289 (4)0.0197 (3)−0.0134 (3)−0.0029 (3)−0.0087 (3)
N1A0.0144 (3)0.0177 (4)0.0181 (4)−0.0063 (3)−0.0058 (3)−0.0050 (3)
N2A0.0165 (3)0.0214 (4)0.0155 (3)−0.0096 (3)−0.0047 (3)−0.0048 (3)
N3A0.0176 (4)0.0251 (4)0.0174 (4)−0.0100 (3)−0.0029 (3)−0.0079 (3)
C1A0.0152 (4)0.0199 (4)0.0155 (4)−0.0075 (3)−0.0031 (3)−0.0057 (3)
C2A0.0166 (4)0.0179 (4)0.0149 (4)−0.0063 (3)−0.0049 (3)−0.0057 (3)
C3A0.0144 (4)0.0174 (4)0.0179 (4)−0.0066 (3)−0.0047 (3)−0.0054 (3)
C4A0.0162 (4)0.0203 (4)0.0156 (4)−0.0079 (3)−0.0031 (3)−0.0048 (3)
C5A0.0163 (4)0.0197 (4)0.0141 (4)−0.0068 (3)−0.0042 (3)−0.0049 (3)
C6A0.0142 (4)0.0165 (4)0.0160 (4)−0.0052 (3)−0.0051 (3)−0.0047 (3)
C7A0.0151 (4)0.0193 (4)0.0172 (4)−0.0070 (3)−0.0045 (3)−0.0048 (3)
C8A0.0147 (4)0.0142 (4)0.0167 (4)−0.0042 (3)−0.0058 (3)−0.0045 (3)
C9A0.0193 (4)0.0321 (6)0.0253 (5)−0.0151 (4)−0.0009 (4)−0.0105 (4)
S1B0.01952 (11)0.01809 (12)0.02886 (13)−0.00806 (9)−0.01069 (10)−0.00520 (9)
O1B0.0208 (3)0.0155 (3)0.0330 (4)−0.0036 (3)−0.0123 (3)−0.0099 (3)
O2B0.0178 (3)0.0175 (3)0.0280 (4)−0.0032 (3)−0.0118 (3)−0.0089 (3)
N1B0.0142 (3)0.0186 (4)0.0181 (4)−0.0064 (3)−0.0052 (3)−0.0054 (3)
N2B0.0157 (3)0.0157 (4)0.0236 (4)−0.0053 (3)−0.0086 (3)−0.0049 (3)
N3B0.0193 (4)0.0159 (4)0.0279 (4)−0.0046 (3)−0.0095 (3)−0.0061 (3)
C1B0.0148 (4)0.0152 (4)0.0201 (4)−0.0028 (3)−0.0063 (3)−0.0065 (3)
C2B0.0158 (4)0.0141 (4)0.0191 (4)−0.0044 (3)−0.0049 (3)−0.0067 (3)
C3B0.0146 (4)0.0169 (4)0.0164 (4)−0.0057 (3)−0.0047 (3)−0.0059 (3)
C4B0.0168 (4)0.0152 (4)0.0187 (4)−0.0045 (3)−0.0072 (3)−0.0045 (3)
C5B0.0170 (4)0.0137 (4)0.0183 (4)−0.0050 (3)−0.0058 (3)−0.0044 (3)
C6B0.0148 (4)0.0156 (4)0.0158 (4)−0.0055 (3)−0.0041 (3)−0.0050 (3)
C7B0.0150 (4)0.0164 (4)0.0182 (4)−0.0050 (3)−0.0054 (3)−0.0051 (3)
C8B0.0165 (4)0.0172 (4)0.0173 (4)−0.0073 (3)−0.0039 (3)−0.0045 (3)
C9B0.0193 (4)0.0214 (5)0.0322 (5)−0.0022 (4)−0.0141 (4)−0.0104 (4)
O1W0.0225 (4)0.0180 (3)0.0206 (3)−0.0044 (3)−0.0056 (3)−0.0051 (3)

Geometric parameters (Å, °)

S1A—C8A1.6988 (10)O1B—C2B1.3668 (12)
O1A—C2A1.3794 (11)O1B—H1OB0.820 (17)
O1A—H1OA0.814 (17)O2B—C3B1.3633 (12)
O2A—C3A1.3593 (12)O2B—C9B1.4324 (12)
O2A—C9A1.4322 (13)N1B—C7B1.2836 (13)
N1A—C7A1.2857 (12)N1B—N2B1.3824 (11)
N1A—N2A1.3794 (12)N2B—C8B1.3373 (13)
N2A—C8A1.3486 (12)N2B—H2NB0.841 (17)
N2A—H2NA0.928 (17)N3B—C8B1.3292 (13)
N3A—C8A1.3219 (13)N3B—H3NC0.832 (17)
N3A—H3NA0.847 (16)N3B—H3ND0.875 (16)
N3A—H3NB0.864 (15)C1B—C2B1.3816 (13)
C1A—C2A1.3776 (13)C1B—C6B1.4016 (14)
C1A—C6A1.4028 (13)C1B—H1BA0.9300
C1A—H1AA0.9300C2B—C3B1.4037 (13)
C2A—C3A1.3993 (14)C3B—C4B1.3905 (14)
C3A—C4A1.3912 (13)C4B—C5B1.3888 (13)
C4A—C5A1.3890 (14)C4B—H4BA0.9300
C4A—H4AA0.9300C5B—C6B1.3966 (13)
C5A—C6A1.3977 (14)C5B—H5BA0.9300
C5A—H5AA0.9300C6B—C7B1.4547 (13)
C6A—C7A1.4550 (13)C7B—H7BA0.9300
C7A—H7AA0.9300C9B—H9BA0.9600
C9A—H9AA0.9600C9B—H9BB0.9600
C9A—H9AB0.9600C9B—H9BC0.9600
C9A—H9AC0.9600O1W—H2W10.8600
S1B—C8B1.7090 (10)O1W—H1W10.8531
C2A—O1A—H1OA109.5 (12)C3B—O2B—C9B115.87 (8)
C3A—O2A—C9A117.44 (8)C7B—N1B—N2B114.34 (8)
C7A—N1A—N2A115.51 (8)C8B—N2B—N1B120.11 (8)
C8A—N2A—N1A118.54 (8)C8B—N2B—H2NB119.9 (11)
C8A—N2A—H2NA123.0 (10)N1B—N2B—H2NB119.9 (11)
N1A—N2A—H2NA118.2 (10)C8B—N3B—H3NC118.1 (11)
C8A—N3A—H3NA120.0 (10)C8B—N3B—H3ND118.5 (10)
C8A—N3A—H3NB122.4 (10)H3NC—N3B—H3ND122.8 (15)
H3NA—N3A—H3NB117.6 (14)C2B—C1B—C6B120.65 (9)
C2A—C1A—C6A119.93 (9)C2B—C1B—H1BA119.7
C2A—C1A—H1AA120.0C6B—C1B—H1BA119.7
C6A—C1A—H1AA120.0O1B—C2B—C1B118.58 (9)
C1A—C2A—O1A119.54 (9)O1B—C2B—C3B121.76 (9)
C1A—C2A—C3A120.63 (9)C1B—C2B—C3B119.67 (9)
O1A—C2A—C3A119.82 (8)O2B—C3B—C4B125.42 (9)
O2A—C3A—C4A126.57 (9)O2B—C3B—C2B114.74 (9)
O2A—C3A—C2A113.56 (8)C4B—C3B—C2B119.84 (9)
C4A—C3A—C2A119.86 (9)C5B—C4B—C3B120.41 (9)
C5A—C4A—C3A119.55 (9)C5B—C4B—H4BA119.8
C5A—C4A—H4AA120.2C3B—C4B—H4BA119.8
C3A—C4A—H4AA120.2C4B—C5B—C6B120.01 (9)
C4A—C5A—C6A120.79 (9)C4B—C5B—H5BA120.0
C4A—C5A—H5AA119.6C6B—C5B—H5BA120.0
C6A—C5A—H5AA119.6C5B—C6B—C1B119.39 (9)
C5A—C6A—C1A119.24 (9)C5B—C6B—C7B122.48 (9)
C5A—C6A—C7A122.91 (8)C1B—C6B—C7B118.13 (9)
C1A—C6A—C7A117.85 (9)N1B—C7B—C6B121.82 (9)
N1A—C7A—C6A121.12 (9)N1B—C7B—H7BA119.1
N1A—C7A—H7AA119.4C6B—C7B—H7BA119.1
C6A—C7A—H7AA119.4N3B—C8B—N2B118.02 (9)
N3A—C8A—N2A117.23 (9)N3B—C8B—S1B123.94 (8)
N3A—C8A—S1A123.10 (7)N2B—C8B—S1B118.01 (7)
N2A—C8A—S1A119.64 (7)O2B—C9B—H9BA109.5
O2A—C9A—H9AA109.5O2B—C9B—H9BB109.5
O2A—C9A—H9AB109.5H9BA—C9B—H9BB109.5
H9AA—C9A—H9AB109.5O2B—C9B—H9BC109.5
O2A—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BB—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H2W1—O1W—H1W1109.0
C2B—O1B—H1OB109.3 (12)
C7A—N1A—N2A—C8A176.03 (9)C7B—N1B—N2B—C8B−175.36 (9)
C6A—C1A—C2A—O1A−179.88 (9)C6B—C1B—C2B—O1B177.67 (9)
C6A—C1A—C2A—C3A0.19 (15)C6B—C1B—C2B—C3B−1.69 (15)
C9A—O2A—C3A—C4A−3.53 (16)C9B—O2B—C3B—C4B−1.14 (14)
C9A—O2A—C3A—C2A177.37 (9)C9B—O2B—C3B—C2B178.05 (9)
C1A—C2A—C3A—O2A179.06 (9)O1B—C2B—C3B—O2B1.74 (14)
O1A—C2A—C3A—O2A−0.87 (14)C1B—C2B—C3B—O2B−178.92 (9)
C1A—C2A—C3A—C4A−0.10 (15)O1B—C2B—C3B—C4B−179.02 (9)
O1A—C2A—C3A—C4A179.97 (9)C1B—C2B—C3B—C4B0.33 (15)
O2A—C3A—C4A—C5A−178.74 (10)O2B—C3B—C4B—C5B179.85 (9)
C2A—C3A—C4A—C5A0.30 (15)C2B—C3B—C4B—C5B0.69 (15)
C3A—C4A—C5A—C6A−0.61 (15)C3B—C4B—C5B—C6B−0.35 (15)
C4A—C5A—C6A—C1A0.70 (15)C4B—C5B—C6B—C1B−1.00 (15)
C4A—C5A—C6A—C7A−179.96 (10)C4B—C5B—C6B—C7B178.61 (9)
C2A—C1A—C6A—C5A−0.49 (15)C2B—C1B—C6B—C5B2.03 (15)
C2A—C1A—C6A—C7A−179.86 (9)C2B—C1B—C6B—C7B−177.59 (9)
N2A—N1A—C7A—C6A179.81 (9)N2B—N1B—C7B—C6B−178.82 (9)
C5A—C6A—C7A—N1A3.67 (16)C5B—C6B—C7B—N1B−3.38 (15)
C1A—C6A—C7A—N1A−176.98 (9)C1B—C6B—C7B—N1B176.23 (9)
N1A—N2A—C8A—N3A0.26 (14)N1B—N2B—C8B—N3B0.04 (14)
N1A—N2A—C8A—S1A178.63 (7)N1B—N2B—C8B—S1B−178.29 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H2W1···S1B0.862.283.1257 (9)169
O1W—H1W1···O1Ai0.851.952.7955 (12)173
N2A—H2NA···S1Aii0.929 (18)2.450 (18)3.3732 (9)172.6 (18)
N2B—H2NB···S1Biii0.842 (19)2.571 (18)3.4055 (10)171.2 (18)
N3A—H3NA···N1A0.847 (19)2.258 (15)2.6129 (14)105.4 (12)
N3A—H3NB···O1Wiv0.864 (16)2.000 (15)2.8408 (12)164.0 (17)
N3B—H3NC···O1W0.833 (19)2.399 (19)3.1492 (14)150.2 (17)
N3B—H3ND···N1B0.875 (19)2.288 (17)2.6554 (14)105.2 (13)
O1A—H1OA···O2A0.81 (2)2.185 (18)2.6292 (12)114.5 (15)
O1B—H1OB···S1Av0.82 (2)2.685 (19)3.2346 (10)125.9 (16)
O1B—H1OB···O2B0.82 (2)2.251 (19)2.6949 (13)114.4 (16)
C1B—H1BA···O1Wvi0.932.403.3140 (14)169
C9B—H9BA···O2Avii0.962.513.2286 (15)131

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y−1, z; (vi) x, y−1, z; (vii) −x, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2321).

References

  • Al-Awadi, N. A., Shuaibna, Abbas A., Ei-Sherif, A. A., Ei-Dissouky, A. & Al-Saleh, E. (2008). Bioinorg. Chem. Appl. doi:10.1155/2008/479897. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ferrari, M. B., Capacchi, S., Bisceglie, F., Pelosi, G. & Tarasconi, P. (2001). Inorg. Chim. Acta, 312, 81–87.
  • Kizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met. Org. Chem.34, 653–665.
  • Mishra, D., Nasker, S., Drew, M. G. B. & Chattopadhyay, S. K. (2006). Inorg. Chim. Acta, 359, 585–592.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography