PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1528.
Published online 2008 November 13. doi:  10.1107/S1600536808036131
PMCID: PMC2959912

Poly[bis[3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexa­azacyclo­tetra­deca­ne]tetra-μ-cyanido-tetracyanidodicopper(II)molybdenum(IV)] tetra­hydrate]

Abstract

In the title complex, {[Cu2Mo(CN)8(C12H30N6O2)2]·4H2O}n, the polyhedron around Mo has site symmetry An external file that holds a picture, illustration, etc.
Object name is e-64-m1528-efi1.jpg with a distorted square-antiprismatic shape, while the Cu atom (2 symmetry) is in a distorted axially elongated octa­hedral coordination environment. The uncoordinated water molecule is disordered over three sites with occupancies of 0.445 (7), 0.340 (7) and 0.215 (7). Mo and Cu atoms acting as basic components are connected by an Mo—CN—Cu—NC—Mo— linkage to form a distorted diamond-like network. Additional hydrogen bonding between the N—H groups and the water molecules stabilizes this arrangement.

Related literature

For background information, see: Larionova et al. (2004 [triangle]); Przychodzeń et al. (2006 [triangle]). For related structures, see: Chen et al. (2007 [triangle]); Zhou et al. (2007 [triangle]; 2008 [triangle]). For literature related to the synthesis, see: Suh & Kang (1988 [triangle]); Leipoldt et al. (1974 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1528-scheme1.jpg

Experimental

Crystal data

  • [Cu2Mo(CN)8(C12H30N6O2)2]·4H2O
  • M r = 1084.08
  • Tetragonal, An external file that holds a picture, illustration, etc.
Object name is e-64-m1528-efi2.jpg
  • a = 20.0707 (10) Å
  • c = 15.4380 (17) Å
  • V = 6218.9 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.93 mm−1
  • T = 293 (2) K
  • 0.32 × 0.28 × 0.26 mm

Data collection

  • Bruker SMART APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.75, T max = 0.79
  • 16289 measured reflections
  • 3053 independent reflections
  • 2459 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.103
  • S = 1.06
  • 3053 reflections
  • 165 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536808036131/pv2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036131/pv2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work is supported by the University Natural Science Foundation of Jiangsu Province (grant No. 07KJB150030).

supplementary crystallographic information

Comment

Recently, octacyanometalates [M(CN)8]3-/4- (M = Mo, W and Nb) have been found to be versatile building blocks and investigated extensively (Larionova et al., 2004; Przychodzeń et al., 2006). For [CuL]2+/[M(CN)8]3-/4- (L = macrocyclic ligands) bimetallic systems, macrocyclic ligands block partly coordination sites of the metal ions and release their apical ones, which can be used to construct cyano-bridged bimetallic complexes with octacyanometalate [M(CN)8]3-/4- ions. In a recent study, we chose [CuL]2+ (L = 3,10-diethanol-1,3,5,8,10,12-hexaazacyclotetradecane) as building block to synthesize successfully an octacyanometalate-based bimetallic complex [CuL]2[Mo(CN)8].4H2O, (I), with a distorted diamond network.

The title complex crystallizes in the tetragonal (I41/a) space group. As displayed in Fig. 1, the Mo atom is coordinated by eight CN groups in a distorted square antiprism. The Cu atom is in a distorted axially elongated octahedral coordination environment, in which four nitrogen atoms from the ligand (L) occupy the equatorial positions, while the axial sites are occupied by two nitrogen atoms from the bridging cyanide groups on different [Mo(CN)8]4- anions. The bonding parameters of the macrocyclic ligand L are reminiscent of those found in related complexes reported previously (Chen et al., 2007).

As shown in Fig. 2, Mo and Cu atoms acting as basic components (linker and connector, respectively) are connected by the Mo—CN—Cu—NC—Mo— linkages to form a three-dimensional structure. The network is composed of [CuL]2+ unit that is linked via cyanides to adjacent four-connected [Mo(CN)8(µ-CN)4]4- centers. From a topological standpoint, each [Mo(CN)8] unit is a tetrahedral four-connecting node. These nodes are linked to four adjacent [Mo(CN)8] units by the [CuL] units, acting as linear two-connectors. The result is a distorted diamond network (Fig. 2), which is similar to octacyanometalate-based bimetallic complexes reported previously (Zhou et al., 2007; 2008).

Experimental

Well shaped brown crystals of the title complex suitable for X-ray single-crystal structure determination were grown at room temperature by slow diffusion of a DMF solution (15 ml) of [CuL](ClO4)2 (0.30 mmol) (Suh and Kang, 1988) and an aqueous solution (15 ml) of K4[Mo(CN)8].2H2O (0.15 mmol) (Leipoldt et al., 1974) in a U-shaped tube containing agar for about one month. The resulting crystals were collected, washed with H2O and dried in air.

Refinement

All hydrogen atoms except for hydrogen atoms bound to water molecules were calculated at idealized positions with C–H = 0.99, N–H = 0.93 and O–H = 0.85 Å and included in the refinement in a riding mode with Uiso for H assigned as 1.2 times Ueq of the attached atoms. The O atom of the water of hydration molecule was disordered over three sites with unequal site occupancy factors at locations O2, O3 and O4. The H atoms of the disordered water molecule were located from difference maps and were included in the refinements at geometrically idealized positions with O–H distances 0.85 Å and Uiso assigned as 1.2 times Ueq of the attached O atoms.

Figures

Fig. 1.
ORTEP drawing of the title complex, showing the atom labeling. Hydrogen atoms and water molecules are omitted for clarity. Symmetry codes: A: 2-x, 1-y, -z; B: 2-x, 0.5-y, z; C: 1.25-y, -0.75+x, 0.25-z.
Fig. 2.
Topological depiction of the title complex, where the Mo nodes and the Cu connectors are shown in pink and green colors, respectively.

Crystal data

[Cu2Mo(CN)8(C12H30N6O2)2]·4H2OZ = 4
Mr = 1084.08F000 = 2256
Tetragonal, I41/aDx = 1.158 Mg m3
Hall symbol: -I 4adMo Kα radiation λ = 0.71073 Å
a = 20.0707 (10) ÅCell parameters from 3093 reflections
b = 20.0707 (10) Åθ = 2.6–21.2º
c = 15.4380 (17) ŵ = 0.93 mm1
α = 90ºT = 293 (2) K
β = 90ºBlock, brown
γ = 90º0.32 × 0.28 × 0.26 mm
V = 6218.9 (8) Å3

Data collection

Bruker SMART APEXII diffractometer3053 independent reflections
Radiation source: sealed tube2459 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
T = 293(2) Kθmax = 26.0º
phi and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2002)h = −24→24
Tmin = 0.75, Tmax = 0.79k = −19→24
16289 measured reflectionsl = −16→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.0515P)2 + 3.1936P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3053 reflectionsΔρmax = 0.23 e Å3
165 parametersΔρmin = −0.38 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.96688 (13)0.34611 (15)0.08263 (19)0.0392 (6)
C21.06251 (16)0.27104 (17)0.0121 (2)0.0485 (7)
C30.86789 (19)0.5451 (2)0.0135 (2)0.0615 (9)
H3A0.83640.58170.02690.074*
H3B0.84760.50250.03220.074*
C40.92199 (19)0.5426 (2)0.1513 (2)0.0610 (9)
H4A0.88630.57160.17460.073*
H4B0.90810.49570.15970.073*
C51.0360 (2)0.5073 (2)0.1850 (2)0.0627 (10)
H5A1.01950.46180.19710.075*
H5B1.07150.51720.22770.075*
C61.1181 (2)0.4567 (2)0.0813 (2)0.0649 (10)
H6A1.10230.41260.10130.078*
H6B1.15910.46820.11370.078*
C70.99694 (18)0.62268 (18)0.2106 (2)0.0570 (9)
H7A0.96230.64910.18050.068*
H7B1.03970.63170.18080.068*
C81.0028 (2)0.6495 (2)0.3018 (3)0.0694 (11)
H8A1.05050.65190.31750.083*
H8B0.98480.69540.30300.083*
Cu21.00000.50000.00000.04929 (18)
Mo11.00000.25000.12500.03165 (14)
N10.94948 (13)0.39753 (13)0.05790 (17)0.0467 (6)
N21.09533 (14)0.28414 (15)−0.04505 (19)0.0554 (7)
N30.92993 (13)0.55566 (15)0.05812 (19)0.0539 (7)
H3C0.94170.60020.05140.065*
N40.98158 (17)0.55421 (16)0.1980 (3)0.0737 (9)
N51.06603 (14)0.50813 (15)0.09613 (16)0.0500 (7)
H5C1.08660.54930.08960.060*
O10.9722 (2)0.6148 (2)0.3594 (3)0.1107 (12)
H1C0.99170.57740.36510.133*
O20.1088 (4)0.4119 (4)0.3446 (5)0.072 (3)0.340 (7)
H2A0.08570.44730.34540.087*0.340 (7)
H2B0.09940.38930.38960.087*0.340 (7)
O30.2794 (8)0.5343 (7)0.0656 (10)0.088 (6)0.215 (7)
H3D0.29570.57080.08360.105*0.215 (7)
H3E0.31070.50760.05260.105*0.215 (7)
O40.2103 (3)0.2935 (3)0.8613 (3)0.065 (2)0.445 (7)
H4D0.18140.31660.88820.078*0.445 (7)
H4E0.19700.25340.85770.078*0.445 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0211 (12)0.0461 (17)0.0503 (17)0.0025 (11)−0.0005 (11)0.0068 (13)
C20.0437 (17)0.0534 (19)0.0485 (18)−0.0006 (14)0.0066 (14)−0.0020 (15)
C30.058 (2)0.064 (2)0.063 (2)−0.0125 (18)−0.0127 (17)0.0055 (18)
C40.058 (2)0.083 (3)0.0428 (19)−0.0050 (19)0.0110 (15)0.0042 (17)
C50.068 (2)0.079 (3)0.0419 (18)0.0000 (19)−0.0184 (17)−0.0064 (17)
C60.072 (2)0.079 (3)0.044 (2)−0.007 (2)−0.0283 (18)0.0000 (17)
C70.060 (2)0.056 (2)0.0550 (19)−0.0147 (16)0.0152 (16)−0.0383 (16)
C80.071 (2)0.068 (2)0.069 (3)−0.003 (2)0.019 (2)−0.024 (2)
Cu20.0514 (3)0.0560 (3)0.0405 (3)−0.0020 (3)−0.0059 (2)0.0008 (2)
Mo10.01805 (15)0.01805 (15)0.0589 (3)0.0000.0000.000
N10.0459 (14)0.0452 (14)0.0490 (15)0.0031 (11)−0.0036 (12)0.0120 (12)
N20.0549 (17)0.0586 (17)0.0528 (17)−0.0083 (14)0.0019 (14)0.0287 (14)
N30.0405 (14)0.0671 (18)0.0540 (16)0.0017 (13)0.0018 (12)0.0123 (14)
N40.071 (2)0.0478 (18)0.103 (3)−0.0030 (15)0.018 (2)−0.0012 (17)
N50.0521 (16)0.0572 (17)0.0406 (14)0.0061 (13)−0.0163 (12)−0.0079 (12)
O10.115 (3)0.113 (3)0.104 (3)0.004 (2)0.011 (2)0.006 (2)
O20.060 (5)0.092 (6)0.065 (5)0.023 (4)−0.024 (4)−0.028 (4)
O30.097 (11)0.063 (8)0.103 (11)−0.006 (7)0.041 (9)−0.006 (8)
O40.064 (4)0.091 (5)0.041 (3)−0.014 (3)0.016 (2)0.009 (3)

Geometric parameters (Å, °)

C1—N11.154 (4)C8—O11.285 (5)
C1—Mo12.143 (3)C8—H8A0.9900
C2—N21.132 (4)C8—H8B0.9900
C2—Mo12.188 (3)Cu2—N5i1.996 (2)
C3—N31.439 (4)Cu2—N51.996 (2)
C3—C6i1.490 (5)Cu2—N32.008 (3)
C3—H3A0.9900Cu2—N3i2.008 (3)
C3—H3B0.9900Cu2—N1i2.461 (3)
C4—N41.416 (5)Cu2—N12.461 (3)
C4—N31.470 (5)Mo1—C1ii2.143 (3)
C4—H4A0.9900Mo1—C1iii2.143 (3)
C4—H4B0.9900Mo1—C1iv2.143 (3)
C5—N41.457 (5)Mo1—C2iii2.188 (3)
C5—N51.499 (5)Mo1—C2iv2.188 (3)
C5—H5A0.9900Mo1—C2ii2.188 (3)
C5—H5B0.9900N3—H3C0.9300
C6—N51.487 (5)N5—H5C0.9300
C6—C3i1.490 (5)O1—H1C0.8501
C6—H6A0.9900O2—H2A0.8500
C6—H6B0.9900O2—H2B0.8500
C7—N41.422 (4)O3—H3D0.8500
C7—C81.512 (5)O3—H3E0.8500
C7—H7A0.9900O4—H4D0.8498
C7—H7B0.9900O4—H4E0.8498
N1—C1—Mo1178.4 (3)N3i—Cu2—N189.19 (10)
N2—C2—Mo1177.5 (3)N1i—Cu2—N1180.00 (11)
N3—C3—C6i108.1 (3)C1ii—Mo1—C1iii95.35 (5)
N3—C3—H3A110.1C1ii—Mo1—C1144.45 (16)
C6i—C3—H3A110.1C1iii—Mo1—C195.35 (5)
N3—C3—H3B110.1C1ii—Mo1—C1iv95.35 (5)
C6i—C3—H3B110.1C1iii—Mo1—C1iv144.45 (16)
H3A—C3—H3B108.4C1—Mo1—C1iv95.35 (5)
N4—C4—N3112.2 (3)C1ii—Mo1—C2iii145.00 (12)
N4—C4—H4A109.2C1iii—Mo1—C2iii76.18 (12)
N3—C4—H4A109.2C1—Mo1—C2iii70.56 (12)
N4—C4—H4B109.2C1iv—Mo1—C2iii75.69 (12)
N3—C4—H4B109.2C1ii—Mo1—C2iv70.56 (12)
H4A—C4—H4B107.9C1iii—Mo1—C2iv75.69 (12)
N4—C5—N5114.8 (3)C1—Mo1—C2iv144.99 (12)
N4—C5—H5A108.6C1iv—Mo1—C2iv76.18 (12)
N5—C5—H5A108.6C2iii—Mo1—C2iv74.44 (17)
N4—C5—H5B108.6C1ii—Mo1—C275.69 (12)
N5—C5—H5B108.6C1iii—Mo1—C2144.99 (12)
H5A—C5—H5B107.5C1—Mo1—C276.17 (12)
N5—C6—C3i107.5 (3)C1iv—Mo1—C270.55 (12)
N5—C6—H6A110.2C2iii—Mo1—C2129.35 (11)
C3i—C6—H6A110.2C2iv—Mo1—C2129.35 (11)
N5—C6—H6B110.2C1ii—Mo1—C2ii76.17 (12)
C3i—C6—H6B110.2C1iii—Mo1—C2ii70.55 (12)
H6A—C6—H6B108.5C1—Mo1—C2ii75.69 (12)
N4—C7—C8119.2 (4)C1iv—Mo1—C2ii144.99 (12)
N4—C7—H7A107.5C2iii—Mo1—C2ii129.36 (11)
C8—C7—H7A107.5C2iv—Mo1—C2ii129.35 (11)
N4—C7—H7B107.5C2—Mo1—C2ii74.44 (17)
C8—C7—H7B107.5C1—N1—Cu2137.9 (2)
H7A—C7—H7B107.0C3—N3—C4110.4 (3)
O1—C8—C7114.5 (4)C3—N3—Cu2108.1 (2)
O1—C8—H8A108.6C4—N3—Cu2114.4 (2)
C7—C8—H8A108.6C3—N3—H3C107.9
O1—C8—H8B108.6C4—N3—H3C107.9
C7—C8—H8B108.6Cu2—N3—H3C107.9
H8A—C8—H8B107.6C4—N4—C7114.3 (3)
N5i—Cu2—N5180.0C4—N4—C5117.2 (3)
N5i—Cu2—N384.99 (12)C7—N4—C5118.8 (3)
N5—Cu2—N395.01 (12)C6—N5—C5114.6 (3)
N5i—Cu2—N3i95.01 (12)C6—N5—Cu2107.20 (19)
N5—Cu2—N3i84.99 (12)C5—N5—Cu2114.4 (2)
N3—Cu2—N3i180.0C6—N5—H5C106.7
N5i—Cu2—N1i94.12 (11)C5—N5—H5C106.7
N5—Cu2—N1i85.88 (11)Cu2—N5—H5C106.7
N3—Cu2—N1i89.19 (10)C8—O1—H1C109.3
N3i—Cu2—N1i90.81 (10)H2A—O2—H2B108.2
N5i—Cu2—N185.88 (11)H3D—O3—H3E109.5
N5—Cu2—N194.12 (11)H4D—O4—H4E109.5
N3—Cu2—N190.81 (10)
N4—C7—C8—O1−22.2 (6)N3—C4—N4—C5−70.7 (4)
N5i—Cu2—N1—C1129.7 (4)C8—C7—N4—C4120.0 (4)
N5—Cu2—N1—C1−50.3 (4)C8—C7—N4—C5−94.9 (4)
N3—Cu2—N1—C1−145.4 (4)N5—C5—N4—C466.8 (4)
N3i—Cu2—N1—C134.6 (4)N5—C5—N4—C7−77.3 (4)
C6i—C3—N3—C4−166.9 (3)C3i—C6—N5—C5168.3 (3)
C6i—C3—N3—Cu2−41.1 (3)C3i—C6—N5—Cu240.2 (3)
N4—C4—N3—C3−178.4 (3)N4—C5—N5—C6−175.7 (3)
N4—C4—N3—Cu259.5 (4)N4—C5—N5—Cu2−51.3 (4)
N5i—Cu2—N3—C314.8 (2)N3—Cu2—N5—C6165.6 (2)
N5—Cu2—N3—C3−165.2 (2)N3i—Cu2—N5—C6−14.4 (2)
N1i—Cu2—N3—C3109.0 (2)N1i—Cu2—N5—C6−105.5 (2)
N1—Cu2—N3—C3−71.0 (2)N1—Cu2—N5—C674.5 (2)
N5i—Cu2—N3—C4138.2 (3)N3—Cu2—N5—C537.4 (3)
N5—Cu2—N3—C4−41.8 (3)N3i—Cu2—N5—C5−142.6 (3)
N1i—Cu2—N3—C4−127.6 (2)N1i—Cu2—N5—C5126.3 (3)
N1—Cu2—N3—C452.4 (2)N1—Cu2—N5—C5−53.7 (3)
N3—C4—N4—C775.0 (4)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y+1/2, z; (iii) −y+5/4, x−3/4, −z+1/4; (iv) y+3/4, −x+5/4, −z+1/4.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3C···N2i0.932.443.261 (4)147
N5—H5C···O2v0.932.383.291 (8)165
O1—H1C···O4vi0.852.483.149 (7)136
O4—H4D···N2vii0.852.112.729 (6)129
O4—H4E···O2viii0.852.473.279 (9)159

Symmetry codes: (i) −x+2, −y+1, −z; (v) y+3/4, −x+3/4, z−1/4; (vi) −y+5/4, x+1/4, −z+5/4; (vii) x−1, y, z+1; (viii) y−1/4, −x+1/4, −z+5/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2114).

References

  • Bruker (2002). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, Y. Y., Zhou, H., Shen, X. P., Lu, H. F. & Yuan, A. H. (2007). J. Mol. Struct.839, 64–68.
  • Larionova, J., Willemin, S., Donnadieu, B., Henner, B., Guérin, C., Gillon, B. & Goujon, A. (2004). J. Phys. Chem. Solids, 65, 677–691.
  • Leipoldt, J. G., Bok, L. D. C. & Cillier, P. J. (1974). Z. Anorg. Allg. Chem.409, 343–344.
  • Przychodzeń, P., Korzeniak, T., Podgajny, R. & Sieklucka, B. (2006). Coord. Chem. Rev.250, 2234–2260.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Suh, M. P. & Kang, S. G. (1988). Inorg. Chem.27, 2544–2546.
  • Zhou, H., Chen, Y. Y., Yuan, A. H. & Shen, X. P. (2008). Inorg. Chem. Commun.11, 363–366.
  • Zhou, H., Yuan, A. H., Shen, X. P., Chen, Y. Y., Price, D. J. & Kepert, C. J. (2007). Inorg. Chem. Commun.10, 940–943.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography