PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1638.
Published online 2008 November 29. doi:  10.1107/S1600536808039822
PMCID: PMC2959910

{6,6′-Dieth­oxy-2,2′-[ethyl­enebis(nitrilo­methyl­idyne)]diphenolato}nickel(II) monohydrate

Abstract

In the title compound, [Ni(C20H22N2O4)]·H2O, the NiII ion and the water mol­ecule are located on a twofold rotation axis. The Ni ion is coordinated by two N [Ni—N = 1.8462 (18) Å] and two O [Ni—O = 1.8645 (14) Å] atoms in a distorted square-planar geometry. The water mol­ecule and the Ni complex mol­ecule are paired via O—H(...)O hydrogen bonds.

Related literature

For details of the synthesis, see Mohanta et al. (2002 [triangle]). For a related crystal structure, see Yu (2006 [triangle]). For general background, see: Ghosh et al. (2006 [triangle]); Samanta et al. (2007 [triangle]); Singh et al. (2007 [triangle]); Yu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1638-scheme1.jpg

Experimental

Crystal data

  • [Ni(C20H22N2O4)]·H2O
  • M r = 431.12
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1638-efi2.jpg
  • a = 12.8401 (8) Å
  • b = 19.6133 (12) Å
  • c = 7.5853 (5) Å
  • V = 1910.3 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.05 mm−1
  • T = 273 (2) K
  • 0.15 × 0.13 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.858, T max = 0.893
  • 8741 measured reflections
  • 1676 independent reflections
  • 1381 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.072
  • S = 1.04
  • 1676 reflections
  • 129 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 1998 [triangle]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808039822/cv2487sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039822/cv2487Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff-bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Samanta et al., 2007). Herein we report a new NiII complex based on the tetradentate Schiff-base ligand N,N'-ethylenebis(3-ethoxysalicylaldimine).

The geometry and labeling scheme for the title compound are depicted in Figure 1. The coordination sphere for the NiII ion in the title complex is a slightly distorted square planar, in which the four positions are occupied by two N and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the Ni ion is only 0.025 Å. The bond lengths of Ni—N and Ni—O are 1.8462 (18) and 1.8645 (14) /A%, respectively, which are consistant with the corresponding distances in 6,6'-dimethoxy-2,2'-(ethane-1,2-diylbis(nitrilomethylidyne)diphenolato)- nickel(II) (Yu, 2006). The crystalline water molecule and Ni-complex are paired via O—H···.O hydrogen bonds (Table 1, Fig. 1).

Experimental

The Schiff base ligand H2L (H2L= N,N'-ethylenebis(3-ethoxysalicylaldimine)) was prepared according to the reported method (Mohanta, et al., 2002). The synthesis of the title complex was carried out by reacting Ni(CH3COO)2.4H2O, and H2L with the molar ratio 1:1 in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction.

Refinement

C-bound H atoms were placed in calculated positions, with C—H distances of 0.93 and 0.97 Å, respectively. Atom H3A was located on a difference Fourier map, but placed in idealized position with O—H = 0.82 Å. All H atoms were refined in riding model approximation, with Uiso(H) = 1.2Ueq(C, O).

Figures

Fig. 1.
View of the title compound with the atom-labelling scheme [symmetry code: (A) -x + 1,y,-z + 1/2]. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines denote H-bonds. C-bound H-atoms omitted for clarity.

Crystal data

[Ni(C20H22N2O4)]·H2OF000 = 904
Mr = 431.12Dx = 1.499 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71073 Å
Hall symbol: -p 2n 2abCell parameters from 2990 reflections
a = 12.8401 (8) Åθ = 3.2–26.5º
b = 19.6133 (12) ŵ = 1.05 mm1
c = 7.5853 (5) ÅT = 273 (2) K
V = 1910.3 (2) Å3Block, red-brown
Z = 40.15 × 0.13 × 0.11 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1676 independent reflections
Radiation source: fine-focus sealed tube1381 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.025
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −15→14
Tmin = 0.858, Tmax = 0.893k = −16→23
8741 measured reflectionsl = −8→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072  w = 1/[σ2(Fo2) + (0.0307P)2 + 0.9816P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1676 reflectionsΔρmax = 0.33 e Å3
129 parametersΔρmin = −0.41 e Å3
1 restraintExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni10.50000.023585 (17)0.25000.03740 (14)
O10.41162 (10)0.09308 (7)0.17417 (19)0.0406 (3)
O20.32670 (11)0.20336 (7)0.03750 (19)0.0454 (4)
O30.50000.23474 (14)0.25000.1240 (15)
H3A0.45990.21000.19620.149*
N10.58936 (15)−0.04538 (8)0.3175 (2)0.0457 (5)
C10.54450 (19)−0.11475 (10)0.3139 (3)0.0565 (6)
H1A0.5201−0.12740.43050.068*
H1B0.5969−0.14740.27730.068*
C20.6841 (2)−0.03851 (12)0.3700 (3)0.0546 (6)
H20.7227−0.07820.38420.066*
C30.31834 (15)0.08654 (10)0.1050 (3)0.0398 (5)
C40.26463 (18)0.02419 (11)0.0914 (3)0.0495 (6)
C50.1623 (2)0.02214 (15)0.0224 (4)0.0684 (8)
H50.1269−0.01920.01710.082*
C60.1152 (2)0.07964 (15)−0.0361 (4)0.0709 (8)
H60.04740.0777−0.07890.085*
C70.16808 (17)0.14183 (13)−0.0323 (3)0.0550 (6)
H70.13610.1811−0.07480.066*
C80.26779 (16)0.14498 (11)0.0345 (3)0.0427 (5)
C90.28968 (19)0.26143 (11)−0.0578 (3)0.0535 (6)
H9A0.22730.2793−0.00240.064*
H9B0.27270.2486−0.17800.064*
C100.3732 (2)0.31410 (12)−0.0576 (4)0.0677 (7)
H10A0.38860.32700.06160.102*
H10B0.35000.3534−0.12230.102*
H10C0.43470.2959−0.11200.102*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.0425 (2)0.0303 (2)0.0394 (2)0.0000.01083 (17)0.000
O10.0376 (8)0.0359 (7)0.0481 (8)−0.0025 (6)0.0007 (7)−0.0011 (6)
O20.0452 (8)0.0416 (8)0.0493 (9)0.0033 (7)−0.0080 (7)0.0010 (7)
O30.132 (3)0.0510 (17)0.189 (4)0.000−0.113 (3)0.000
N10.0557 (12)0.0352 (9)0.0464 (10)0.0072 (9)0.0186 (9)0.0028 (8)
C10.0755 (17)0.0324 (11)0.0617 (16)0.0066 (11)0.0279 (12)0.0043 (10)
C20.0599 (16)0.0458 (14)0.0581 (15)0.0219 (12)0.0157 (12)0.0051 (11)
C30.0369 (11)0.0475 (12)0.0350 (11)−0.0042 (9)0.0075 (9)−0.0053 (9)
C40.0469 (13)0.0523 (13)0.0492 (13)−0.0144 (11)0.0076 (11)−0.0052 (11)
C50.0511 (15)0.0715 (18)0.082 (2)−0.0239 (13)0.0014 (14)−0.0063 (15)
C60.0411 (14)0.092 (2)0.0792 (19)−0.0118 (14)−0.0080 (13)−0.0123 (17)
C70.0427 (13)0.0687 (16)0.0538 (14)0.0038 (12)−0.0028 (11)−0.0060 (12)
C80.0392 (12)0.0522 (13)0.0367 (11)−0.0006 (10)0.0034 (9)−0.0073 (10)
C90.0616 (15)0.0533 (14)0.0455 (13)0.0159 (12)−0.0076 (11)−0.0005 (11)
C100.0848 (19)0.0510 (14)0.0673 (17)0.0039 (14)−0.0112 (15)0.0131 (13)

Geometric parameters (Å, °)

Ni1—N1i1.8462 (18)C3—C81.422 (3)
Ni1—N11.8462 (18)C4—C51.415 (3)
Ni1—O1i1.8645 (14)C4—C2i1.426 (3)
Ni1—O11.8645 (14)C5—C61.354 (4)
O1—C31.314 (2)C5—H50.9300
O2—C81.372 (2)C6—C71.396 (3)
O2—C91.431 (2)C6—H60.9300
O3—H3A0.8168C7—C81.378 (3)
N1—C21.287 (3)C7—H70.9300
N1—C11.478 (3)C9—C101.489 (3)
C1—C1i1.498 (5)C9—H9A0.9700
C1—H1A0.9700C9—H9B0.9700
C1—H1B0.9700C10—H10A0.9600
C2—C4i1.426 (3)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.408 (3)
N1i—Ni1—N185.77 (12)C5—C4—C2i118.7 (2)
N1i—Ni1—O1i178.06 (7)C6—C5—C4120.8 (2)
N1—Ni1—O1i94.12 (7)C6—C5—H5119.6
N1i—Ni1—O194.12 (7)C4—C5—H5119.6
N1—Ni1—O1178.06 (7)C5—C6—C7120.2 (2)
O1i—Ni1—O186.06 (8)C5—C6—H6119.9
C3—O1—Ni1127.35 (13)C7—C6—H6119.9
C8—O2—C9118.21 (16)C8—C7—C6119.9 (2)
C2—N1—C1118.07 (19)C8—C7—H7120.1
C2—N1—Ni1126.62 (16)C6—C7—H7120.1
C1—N1—Ni1115.29 (16)O2—C8—C7123.7 (2)
N1—C1—C1i108.01 (14)O2—C8—C3114.51 (17)
N1—C1—H1A110.1C7—C8—C3121.8 (2)
C1i—C1—H1A110.1O2—C9—C10108.22 (18)
N1—C1—H1B110.1O2—C9—H9A110.1
C1i—C1—H1B110.1C10—C9—H9A110.1
H1A—C1—H1B108.4O2—C9—H9B110.1
N1—C2—C4i126.2 (2)C10—C9—H9B110.1
N1—C2—H2116.9H9A—C9—H9B108.4
C4i—C2—H2116.9C9—C10—H10A109.5
O1—C3—C4124.1 (2)C9—C10—H10B109.5
O1—C3—C8119.19 (18)H10A—C10—H10B109.5
C4—C3—C8116.69 (19)C9—C10—H10C109.5
C3—C4—C5120.4 (2)H10A—C10—H10C109.5
C3—C4—C2i120.5 (2)H10B—C10—H10C109.5

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.822.383.056 (3)140
O3—H3A···O20.822.102.8158 (15)147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2487).

References

  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.
  • Mohanta, S., Lin, H. H., Lee, C. J. & Wei, H. H. (2002). Inorg. Chem. Commun.5, 585–588.
  • Samanta, B., Chakraborty, J., Choudhury, C. R., Dey, S. K., Dey, D. K., Batten, S. R., Jensen, P., Yap, G. P. A. & Mitra, S. (2007). Struct. Chem.18, 33–41.
  • Sheldrick, G. M. (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem.42, 394–402. [PubMed]
  • Yu, Y.-Y. (2006). Acta Cryst. E62, m948–m949.
  • Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun.10, 401–403.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography