PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2446.
Published online 2008 November 26. doi:  10.1107/S1600536808038750
PMCID: PMC2959908

A monoclinic polymorph of 4,4′-dichloro-2,2′-(piperazine-1,4-diyl­dimethyl­ene)diphenol

Abstract

The titile compound, C18H20Cl2N2O2, crystallizes as a monoclinic form in the space group P21/n, with Z′ = 1/2. It is polymorphic with the previously reported orthorhombic form [Kubono, Tsuno, Tani & Yokoi (2008). Acta Cryst. E64, o2309]. In the present polymorph, the mol­ecule lies on a crystallographic inversion centre at the piperazine ring centroid. An intra­molecular O—H(...)N hydrogen bond forms an S(6) ring motif. Inter­molecular C—H(...)O hydrogen bonding generates a C(5) chain motif propagating along the b axis, forming sheets parallel to (An external file that holds a picture, illustration, etc.
Object name is e-64-o2446-efi2.jpg02) with a first-level graph set S(6)C(5)R 6 6(34).

Related literature

For the Pbca polymorph, see: Kubono et al. (2008 [triangle]). For graph-set notation in hydrogen bonds, see: Bernstein et al. (1995 [triangle]). For the synthesis of a ligand with two piperazine arms, see: Bharathi et al. (2006 [triangle]). For the monoclinic and ortho­rhom­bic polymorphs of a tetra­chloro-2,2′-(piperazine-1,4-diyl­dimeth­yl­­ene)diphenol, see: Kubono & Yokoi (2007 [triangle]). For the structure of 1,4-bis­(2-hydr­oxy-5-methyl­benz­yl)piperazine, see: Kuppayee et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2446-scheme1.jpg

Experimental

Crystal data

  • C18H20Cl2N2O2
  • M r = 367.26
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2446-efi3.jpg
  • a = 15.755 (4) Å
  • b = 9.2667 (17) Å
  • c = 5.9771 (19) Å
  • β = 96.45 (2)°
  • V = 867.1 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 298.1 K
  • 0.35 × 0.15 × 0.15 mm

Data collection

  • Rigaku AFC-7R diffractometer
  • Absorption correction: none
  • 2462 measured reflections
  • 1994 independent reflections
  • 1316 reflections with F 2 > 2σ(F 2)
  • R int = 0.020
  • 3 standard reflections every 150 reflections intensity decay: 0.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.149
  • S = 1.01
  • 1994 reflections
  • 119 parameters
  • All H-atom parameters refined
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: WinAFC (Rigaku/MSC, 2006 [triangle]); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2006 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: CrystalStructure.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808038750/si2131sup1.cif

Structure factors: contains datablocks II. DOI: 10.1107/S1600536808038750/si2131IIsup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported financially in part by Grants-in-Aid (Nos. 19550040 and 20550075) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

supplementary crystallographic information

Comment

We have recently reported the crystal structure of 4,4'-dichloro-2,2'-(piperazine-1,4-diyldimethylene)diphenol, (I) (Kubono et al., 2008), which crystallizes as an orthorhombic form in space group Pbca with Z' = 1. (I) can act as complexing reagents (Bharathi et al., 2006), so trying to synthesize the zinc complex with this ligand. The crystalline metal complexes were not given, however, a small amount of a new polymorph of the title compound, (II), was obtained from the reaction solution. We report here the molecular and crystal structure of (II).

The molecule of (II) crystallizes in the centrosymmetric space group P21/n with Z' = 1/2 in the asymmetric unit. The molecular structure of (II) is shown in Fig. 1. The molecule lies on a crystallographic inversion centre at the piperazine ring centroid. It is interesting to note that in the orthorhombic form (I) (Kubono et al., 2008) the molecule has a pseudo-inversion centre. The piperazine ring adopts a chair conformation. The bond lengths and angles in (II) are normal and comparable with those in the orthorhombic form (I) (Kubono et al., 2008), in the monoclinic and orthorhombic polymorph of dichlorophenol derivative (Kubono & Yokoi, 2007) and in the p-cresol one (Kuppayee et al., 1999). The molecular structures of (I) and (II) are closely similar, so the only slight differences were observed. The maximum differences of bond distance and angle between the two polymorphs are less than 0.02 Å [C1—C2: (I) 1.377 (4) Å, (II) 1.395 (2) Å] and less than 2 ° [C7—N1—C8: (I) 110.6 (2) °, (II) 112.58 (15) °], respectively. The most obvious differences are the torsion angles C5—C6—C7—N1 [(I) 149.3 (2) °, (II) 157.10 (17) °]. The intramolecular O1—H1···N1 hydrogen bond distance is 2.604 (2) Å (Table 1), forming a S(6) ring motif (Bernstein et al., 1995).

In the crystal structure of (II), there is intermolecular C—H···O hydrogen bond, involving a aromatic H atom (Table 1). Atom C3 in the molecule at (x, y, z) acts as hydrogen bond donor to atom O1 in the molecule at (3/2 - x,1/2 + y,5/2 - z), so forming a C(5) chain running parallel to the [010] direction and generated by the n-glide plane at y = 1/4. The molecules are linked by the combination of the S(6) ring and the C(5) chain into a sheet parallel to (202) with a first level graph set S(6)C(5)R66(34) (Fig. 2). In the crystal structure of (I), intermolecular C—H···O hydrogen bonds involving methylene H atoms generate C(5) chain motifs to form a sheet with a first level graph set S(6)C(5)R66(26) (Kubono et al., 2008). Each polymorph is characterized by the hydrogen bonding network structure.

Experimental

The title compound was prepared by the reaction of 4-chlorophenol, piperazine and paraformaldehyde as described previously (Kubono et al. 2008). The orthorhombic form, (I) (36.7 mg, 0.10 mmol) was dissolved in 25 ml hot chloroform. Then 15 ml of a methanol solution of zinc acetate dihydrate (22.0 mg, 0.10 mmol) were added to this solution. The mixture was stirred for 20 min at 340 K. After a few days at room temperature, trace amount of column crystals of (II) were picked out manually in the reaction solution. Melting point: 512–514 K. ESI-Ms: m/z, 367 for [M]+.

Refinement

The H atoms of the hydroxyl groups were found from a difference Fourier map. The other H atoms were placed at idealized positions with C—H = 0.95 Å. All the H atoms were refined as a riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The molecular structure of (II) with the atom-labelling scheme and displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: (i) 1 - x, -y, 2 - z.]
Fig. 2.
The molecular packing of (II), showing the formation of a sheet with a first level graph set S(6)C(5)R66(34). The hydrogen bonds are shown as dashed lines. The H atoms not involved in the hydrogen bonds have been omitted for clarity.

Crystal data

C18H20Cl2N2O2F000 = 384.00
Mr = 367.26Dx = 1.407 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 15.755 (4) Åθ = 15.2–17.3º
b = 9.2667 (17) ŵ = 0.39 mm1
c = 5.9771 (19) ÅT = 298.1 K
β = 96.45 (2)ºColumn, colorless
V = 867.1 (4) Å30.35 × 0.15 × 0.15 mm
Z = 2

Data collection

Rigaku AFC-7R diffractometerθmax = 27.5º
ω–2θ scansh = −20→20
Absorption correction: nonek = 0→12
2462 measured reflectionsl = −7→4
1994 independent reflections3 standard reflections
1316 reflections with F2 > 2σ(F2) every 150 reflections
Rint = 0.020 intensity decay: 0.4%

Refinement

Refinement on F2All H-atom parameters refined
R[F2 > 2σ(F2)] = 0.041  w = 1/[0.002Fo2 + σ(Fo2)]/(4Fo2)
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.54 e Å3
1994 reflectionsΔρmin = −0.52 e Å3
119 parametersExtinction correction: none

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.70334 (4)0.71539 (6)0.65673 (12)0.0627 (2)
O10.59890 (10)0.28682 (15)1.2938 (2)0.0497 (4)
N10.50843 (9)0.15177 (16)0.9674 (2)0.0354 (3)
C10.62416 (12)0.3779 (2)1.1357 (3)0.0378 (4)
C20.69309 (12)0.4691 (2)1.1990 (3)0.0461 (5)
C30.71835 (13)0.5701 (2)1.0514 (4)0.0473 (5)
C40.67524 (12)0.5798 (2)0.8384 (3)0.0436 (5)
C50.60947 (12)0.4866 (2)0.7692 (3)0.0385 (5)
C60.58325 (11)0.38356 (19)0.9157 (3)0.0337 (4)
C70.50735 (12)0.28755 (19)0.8387 (3)0.0390 (5)
C80.57289 (12)0.0497 (2)0.9043 (4)0.0417 (5)
C90.57559 (11)−0.0814 (2)1.0552 (4)0.0422 (5)
H10.56560.22611.22980.059*
H20.72240.46091.34620.054*
H30.76500.63281.09500.056*
H40.58190.49260.61980.047*
H50.50900.26530.68410.046*
H60.45620.33830.85650.046*
H70.55800.01950.75310.051*
H80.62720.09540.91740.051*
H90.6173−0.14791.01570.051*
H100.5898−0.05101.20650.051*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0679 (4)0.0428 (3)0.0828 (5)−0.0173 (2)0.0324 (3)−0.0034 (2)
O10.0618 (9)0.0389 (8)0.0467 (9)−0.0050 (6)−0.0016 (7)−0.0006 (6)
N10.0266 (6)0.0258 (6)0.0545 (10)−0.0007 (5)0.0077 (6)−0.0043 (6)
C10.0365 (9)0.0272 (8)0.0493 (11)0.0049 (7)0.0029 (8)−0.0052 (8)
C20.0383 (10)0.0387 (10)0.0582 (13)0.0016 (8)−0.0081 (9)−0.0107 (9)
C30.0323 (9)0.0367 (9)0.0727 (15)−0.0036 (8)0.0044 (9)−0.0146 (10)
C40.0363 (9)0.0299 (9)0.0670 (14)−0.0038 (7)0.0158 (9)−0.0074 (8)
C50.0372 (9)0.0304 (9)0.0481 (11)−0.0024 (7)0.0057 (8)−0.0045 (8)
C60.0295 (8)0.0255 (7)0.0463 (10)0.0007 (7)0.0043 (7)−0.0059 (7)
C70.0349 (9)0.0302 (9)0.0510 (12)−0.0037 (7)0.0002 (8)−0.0011 (8)
C80.0314 (8)0.0295 (9)0.0665 (13)−0.0012 (7)0.0153 (8)−0.0067 (8)
C90.0286 (8)0.0293 (8)0.0689 (13)−0.0005 (7)0.0062 (8)−0.0048 (9)

Geometric parameters (Å, °)

Cl1—C41.750 (2)C8—C91.510 (2)
O1—C11.360 (2)O1—H10.832
N1—C71.474 (2)C2—H20.950
N1—C81.468 (2)C3—H30.950
N1—C9i1.468 (2)C5—H40.950
C1—C21.395 (2)C7—H50.950
C1—C61.399 (2)C7—H60.950
C2—C31.375 (3)C8—H70.950
C3—C41.377 (3)C8—H80.950
C4—C51.376 (2)C9—H90.950
C5—C61.389 (2)C9—H100.950
C6—C71.520 (2)
C7—N1—C8112.58 (15)C3—C2—H2120.2
C7—N1—C9i111.96 (14)C2—C3—H3120.7
C8—N1—C9i109.43 (14)C4—C3—H3120.0
O1—C1—C2117.87 (17)C4—C5—H4119.7
O1—C1—C6122.46 (16)C6—C5—H4119.7
C2—C1—C6119.67 (18)N1—C7—H5108.8
C1—C2—C3120.75 (19)N1—C7—H6108.9
C2—C3—C4119.27 (18)C6—C7—H5108.3
Cl1—C4—C3119.17 (14)C6—C7—H6109.0
Cl1—C4—C5119.92 (16)H5—C7—H6109.5
C3—C4—C5120.90 (19)N1—C8—H7109.3
C4—C5—C6120.60 (18)N1—C8—H8109.5
C1—C6—C5118.68 (16)C9—C8—H7108.6
C1—C6—C7121.77 (17)C9—C8—H8110.1
C5—C6—C7119.41 (16)H7—C8—H8109.5
N1—C7—C6112.28 (15)N1i—C9—H9109.3
N1—C8—C9109.81 (17)N1i—C9—H10109.5
N1i—C9—C8109.75 (15)C8—C9—H9110.4
C1—O1—H1108.6C8—C9—H10108.5
C1—C2—H2119.0H9—C9—H10109.5
C7—N1—C8—C9175.34 (15)C6—C1—C2—C33.6 (3)
C8—N1—C7—C6−74.1 (2)C1—C2—C3—C4−0.6 (3)
C7—N1—C9i—C8i−175.02 (17)C2—C3—C4—Cl1176.21 (16)
C9i—N1—C7—C6162.11 (16)C2—C3—C4—C5−2.3 (3)
C8—N1—C9i—C8i59.4 (2)Cl1—C4—C5—C6−176.38 (15)
C9i—N1—C8—C9−59.5 (2)C3—C4—C5—C62.1 (3)
O1—C1—C2—C3−175.83 (18)C4—C5—C6—C10.9 (2)
O1—C1—C6—C5175.67 (17)C4—C5—C6—C7176.70 (17)
O1—C1—C6—C70.0 (2)C1—C6—C7—N1−27.3 (2)
C2—C1—C6—C5−3.8 (2)C5—C6—C7—N1157.10 (17)
C2—C1—C6—C7−179.42 (17)N1—C8—C9—N1i59.7 (2)

Symmetry codes: (i) −x+1, −y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1···N10.831.852.604 (2)150
C3—H3···O1ii0.952.603.547 (2)175

Symmetry codes: (ii) −x+3/2, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2131).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Bharathi, K. S., Rahiman, A. K., Rajesh, K., Sreedaran, S., Aravindan, P. G., Velmurugan, D. & Narayanan, V. (2006). Polyhedron, 25, 2859–2868.
  • Kubono, K., Tsuno, Y., Tani, K. & Yokoi, K. (2008). Acta Cryst. E64, o2309. [PMC free article] [PubMed]
  • Kubono, K. & Yokoi, K. (2007). Acta Cryst. C63, o535–o537. [PubMed]
  • Kuppayee, M., Kumaran, D., Ponnuswamy, M. N., Kandaswamy, M., Violet, M. J., Chinnakali, K. & Fun, H.-K. (1999). Acta Cryst. C55, 2147–2149.
  • Rigaku/MSC (2006). WinAFC and CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography