PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2252.
Published online 2008 November 8. doi:  10.1107/S1600536808034971
PMCID: PMC2959904

1,3-Di-4-pyridylpropane–4,4′-oxy­dibenzoic acid (1/1)

Abstract

In the title compound, C13H14N2·C14H10O5, a 1:1 cocrystal of 1,3-di-4-pyridylpropane (bpp) and 4,4′-oxydibenzoic acid (H2oba), the dihedral angle between the two benzene rings of the flexible H2oba mol­ecule is 57.07 (1)°; the two pyridine rings of bpp make a dihedral angle of 27.52 (1)°. Strong inter­molecular O—H(...)N hydrogen bonds link the mol­ecules into chains, which are then linked into a three-dimensional network through inter­molecular C—H(...)O and π–π stacking inter­actions [centroid–centroid distance = 3.7838 (3) Å].

Related literature

For the use of co-crystallization reactions in developing new methodologies in supra­molecular synthesis, see: Desiraju (2003 [triangle]); Shan et al. (2002 [triangle]). For hydrogen bonding and π–π stacking in mol­ecular synthesis, see: Shattock et al. (2005 [triangle]). For a related structure, see: Ma et al. (2006 [triangle]). An independent determination of this structure is reported in the preceeding paper (Li et al., 2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2252-scheme1.jpg

Experimental

Crystal data

  • C13H14N2·C14H10O5
  • M r = 456.48
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2252-efi1.jpg
  • a = 6.8927 (12) Å
  • b = 11.5788 (19) Å
  • c = 14.974 (3) Å
  • α = 86.638 (3)°
  • β = 81.205 (3)°
  • γ = 73.963 (3)°
  • V = 1134.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.38 × 0.20 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.966, T max = 0.985
  • 5767 measured reflections
  • 3965 independent reflections
  • 1530 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.232
  • S = 1.01
  • 3965 reflections
  • 309 parameters
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034971/fl2224sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034971/fl2224Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06–0891), the Key Project of the Chinese Ministry of Education (208143) and the Important Project of Hubei Provincial Education Office (09HB81).

supplementary crystallographic information

Comment

Co-crystallization reactions provide helpful means for probing the importance and balance between different intermolecular interactions, and thus offer practical guidelines for developing new methodologies in supramolecular synthesis (Desiraju,2003; Shan et al., 2002). The role of hydrogen bonding and π–π stacking for these purposes is well established (Shattock et al.,2005). We attempted to synthesize a CdII complex with the mixed ligand using hydrothermal synthesis conditions. However, we were not successful and a new co-crystal, (bpp)(H2oba)(I), was isolated instead and its structure is reported here. A similar structure has been reported (Ma et al., 2006) and an independent determination of the structure of (I) is reported in the preceeding paper (Li et al., 2008).

The asymmetric unit consists of one bpp and one H2oba as shown in Fig 1. The dihedral angle between the two phenyl rings of the flexible H2oba molecule is 57.07°, while it is 27.52° for the two phenyl rings of the bpp. The COOH group(O4—C27—O5) is co-planar with the phenyl ring and the other COOH group(O2—C20—O3) is slightly twisted with a the twist angle is 10.507 (8)°. In (I), the protonated carboxylate O2 of the flexible H2oba molecule forms two kinds of strong intermolecular hydrogen bonds with atoms N1 and N2 of the bpp molecule (Table 1), linking the molecules into one-dimensional chains. C—H···O hydrogen bonds involving the bpp carbon atoms (C4,C5 and C12) and uncoordinated carboxy oxygen atoms (O3 and O4) provide additional attractive forces between adjacent chains. Furthermore, there are π-π aromatic stacking interactions involving bpp ligands of adjacent units [centroid-centroid distance = 3.7838 (3) Å] that taken together with the C-H···O interactions form a three-dimensional supramolecular motif (Fig. 2).

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and used without further purification. H2oba (0.5 mmol, 0.129 g), Cd(CH3COO)2.2H2O(1.5 mmol, 0.400 g), bpp(0.5 mmol, 0.099 g) and water (15 ml) were placed in a 25 ml Teflon-lined stainless steel reactor and heated at 453 K for five days, and then cooled slowly to 298 K at which time colourless crystals were obtained.The crystal used for data collection was obtained directly from the reaction mixture on cooling without further re-crystallization.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 ?and O—H = 0.82 ?) and allowed to ride on their parent atoms, with Uiso(H)values equal to 1.2Ueq(C) or 1.5Ueq(O).

Figures

Fig. 1.
The structure of (I), with the atom-numbering scheme for the asymmetric unit, showing displacement ellipsoids at the 30% probability level.
Fig. 2.
Supramolecular network formed by hydrogen-bonding and π–π stacking interactions.

Crystal data

C27H24N2O5Z = 2
Mr = 456.48F000 = 480
Triclinic, P1Dx = 1.336 Mg m3
a = 6.8927 (12) ÅMo Kα radiation λ = 0.71073 Å
b = 11.5788 (19) Åθ = 1.8–25.1º
c = 14.974 (3) ŵ = 0.09 mm1
α = 86.638 (3)ºT = 293 (2) K
β = 81.205 (3)ºPrism, colorless
γ = 73.963 (3)º0.38 × 0.20 × 0.16 mm
V = 1134.9 (3) Å3

Data collection

Bruker SMART CCD diffractometer3965 independent reflections
Radiation source: fine-focus sealed tube1530 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
T = 293(2) Kθmax = 25.1º
[var phi] and ω scansθmin = 1.8º
Absorption correction: Multi-scan(SADABS; Sheldrick, 1996)h = −4→8
Tmin = 0.966, Tmax = 0.985k = −11→13
5767 measured reflectionsl = −17→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.232  w = 1/[σ2(Fo2) + (0.09P)2 + 0.05P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3965 reflectionsΔρmax = 0.64 e Å3
309 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1−0.1091 (7)−0.1160 (4)0.5739 (3)0.0694 (12)
N20.6798 (6)0.1948 (4)0.9734 (2)0.0664 (12)
O10.6076 (5)0.3326 (3)0.2752 (2)0.0738 (10)
O2−0.0318 (6)0.1895 (3)0.0761 (2)0.0776 (11)
H2−0.12620.19110.04830.116*
O3−0.1240 (6)0.3872 (3)0.0493 (2)0.0835 (12)
O40.5299 (6)0.7923 (3)0.5091 (3)0.0970 (13)
O50.8627 (5)0.7071 (3)0.4860 (3)0.0918 (12)
H50.86520.76420.51520.138*
C10.6402 (8)0.1023 (4)0.9399 (3)0.0731 (15)
H10.72520.02590.94850.088*
C20.4779 (8)0.1132 (4)0.8923 (3)0.0720 (15)
H2A0.45520.04490.87110.086*
C30.3505 (7)0.2248 (4)0.8766 (3)0.0563 (12)
C40.3945 (7)0.3207 (4)0.9109 (3)0.0665 (14)
H40.31320.39820.90260.080*
C50.5569 (8)0.3026 (4)0.9570 (3)0.0717 (15)
H5A0.58360.36960.97830.086*
C60.1679 (7)0.2448 (4)0.8272 (3)0.0726 (15)
H6A0.04570.27120.87070.087*
H6B0.17050.31000.78370.087*
C70.1503 (7)0.1392 (4)0.7780 (3)0.0723 (15)
H7A0.13950.07490.82130.087*
H7B0.27350.11030.73550.087*
C8−0.0324 (7)0.1698 (4)0.7273 (3)0.0658 (14)
H8A−0.15470.19870.77030.079*
H8B−0.02140.23510.68490.079*
C9−0.0580 (7)0.0684 (4)0.6761 (3)0.0579 (13)
C10−0.2435 (7)0.0733 (4)0.6501 (3)0.0617 (13)
H10−0.35570.13810.66640.074*
C11−0.2627 (8)−0.0177 (5)0.6000 (3)0.0684 (14)
H11−0.3895−0.01120.58290.082*
C120.0675 (8)−0.1175 (4)0.5988 (3)0.0741 (15)
H120.1782−0.18290.58180.089*
C130.1000 (8)−0.0295 (4)0.6480 (3)0.0710 (15)
H130.2295−0.03650.66220.085*
C140.1947 (7)0.4155 (4)0.1356 (3)0.0669 (14)
H140.12440.48080.10350.080*
C150.3456 (8)0.4285 (4)0.1817 (3)0.0679 (14)
H150.38110.50070.17870.081*
C160.4428 (7)0.3329 (4)0.2322 (3)0.0600 (13)
C170.3950 (7)0.2251 (4)0.2337 (3)0.0686 (15)
H170.46330.16020.26680.082*
C180.2452 (7)0.2132 (4)0.1858 (3)0.0642 (14)
H180.21230.14030.18760.077*
C190.1451 (7)0.3072 (4)0.1360 (3)0.0520 (12)
C20−0.0181 (8)0.3011 (5)0.0835 (3)0.0645 (14)
C210.6111 (8)0.4317 (4)0.3224 (3)0.0572 (12)
C220.4418 (8)0.5167 (4)0.3598 (3)0.0655 (14)
H220.31260.51290.35180.079*
C230.4631 (7)0.6079 (4)0.4093 (3)0.0618 (13)
H230.34830.66670.43360.074*
C240.6554 (7)0.6123 (4)0.4232 (3)0.0533 (12)
C250.8227 (7)0.5255 (4)0.3868 (3)0.0659 (14)
H250.95190.52760.39620.079*
C260.8021 (7)0.4350 (4)0.3364 (3)0.0656 (13)
H260.91680.37630.31200.079*
C270.6727 (9)0.7134 (5)0.4775 (3)0.0678 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.055 (3)0.088 (3)0.072 (3)−0.025 (3)−0.024 (2)0.011 (2)
N20.069 (3)0.065 (3)0.075 (3)−0.024 (2)−0.024 (2)−0.006 (2)
O10.070 (2)0.069 (2)0.090 (3)−0.0147 (18)−0.036 (2)−0.0197 (18)
O20.090 (3)0.060 (2)0.098 (3)−0.0266 (19)−0.045 (2)−0.0052 (17)
O30.088 (3)0.066 (2)0.105 (3)−0.015 (2)−0.055 (2)0.007 (2)
O40.073 (3)0.086 (3)0.132 (3)−0.001 (2)−0.034 (3)−0.050 (2)
O50.071 (3)0.096 (3)0.119 (3)−0.026 (2)−0.027 (2)−0.041 (2)
C10.084 (4)0.060 (3)0.086 (4)−0.025 (3)−0.032 (3)−0.002 (3)
C20.086 (4)0.061 (3)0.082 (4)−0.027 (3)−0.035 (3)−0.005 (3)
C30.058 (3)0.056 (3)0.058 (3)−0.019 (3)−0.011 (3)−0.011 (2)
C40.058 (3)0.057 (3)0.087 (4)−0.013 (3)−0.019 (3)−0.013 (3)
C50.073 (4)0.059 (3)0.089 (4)−0.019 (3)−0.022 (3)−0.015 (3)
C60.068 (4)0.072 (3)0.083 (4)−0.021 (3)−0.020 (3)−0.014 (3)
C70.074 (4)0.074 (3)0.080 (4)−0.027 (3)−0.026 (3)−0.013 (3)
C80.062 (3)0.072 (3)0.069 (3)−0.018 (3)−0.025 (3)−0.012 (3)
C90.058 (4)0.067 (3)0.053 (3)−0.018 (3)−0.020 (3)−0.004 (2)
C100.059 (4)0.059 (3)0.071 (3)−0.012 (3)−0.026 (3)−0.008 (2)
C110.054 (4)0.080 (3)0.079 (4)−0.019 (3)−0.032 (3)−0.001 (3)
C120.062 (4)0.071 (3)0.084 (4)−0.007 (3)−0.008 (3)−0.019 (3)
C130.055 (4)0.075 (3)0.085 (4)−0.010 (3)−0.021 (3)−0.026 (3)
C140.078 (4)0.059 (3)0.070 (3)−0.019 (3)−0.030 (3)−0.001 (2)
C150.079 (4)0.063 (3)0.077 (4)−0.033 (3)−0.029 (3)−0.003 (3)
C160.066 (4)0.059 (3)0.062 (3)−0.018 (3)−0.024 (3)−0.009 (2)
C170.075 (4)0.056 (3)0.080 (4)−0.012 (3)−0.034 (3)−0.005 (3)
C180.074 (4)0.047 (3)0.080 (4)−0.021 (3)−0.027 (3)−0.003 (2)
C190.055 (3)0.050 (3)0.055 (3)−0.016 (2)−0.014 (2)−0.010 (2)
C200.066 (4)0.063 (3)0.071 (4)−0.022 (3)−0.019 (3)−0.007 (3)
C210.062 (4)0.058 (3)0.059 (3)−0.021 (3)−0.021 (3)−0.002 (2)
C220.049 (3)0.079 (3)0.075 (4)−0.021 (3)−0.019 (3)−0.009 (3)
C230.056 (3)0.060 (3)0.068 (3)−0.002 (3)−0.026 (3)−0.011 (2)
C240.057 (3)0.060 (3)0.050 (3)−0.020 (3)−0.017 (3)−0.005 (2)
C250.050 (3)0.078 (3)0.075 (4)−0.024 (3)−0.008 (3)−0.020 (3)
C260.047 (3)0.072 (3)0.076 (4)−0.009 (3)−0.010 (3)−0.018 (3)
C270.065 (4)0.070 (4)0.075 (4)−0.019 (3)−0.025 (3)−0.007 (3)

Geometric parameters (Å, °)

N1—C121.321 (6)C9—C131.372 (6)
N1—C111.352 (6)C9—C101.379 (5)
N2—C11.320 (5)C10—C111.375 (6)
N2—C51.333 (5)C10—H100.9300
O1—C161.387 (5)C11—H110.9300
O1—C211.390 (5)C12—C131.376 (6)
O2—C201.333 (5)C12—H120.9300
O2—H20.8200C13—H130.9300
O3—C201.201 (5)C14—C151.378 (6)
O4—C271.200 (5)C14—C191.387 (5)
O5—C271.317 (6)C14—H140.9300
O5—H50.8200C15—C161.376 (6)
C1—C21.388 (6)C15—H150.9300
C1—H10.9300C16—C171.374 (6)
C2—C31.377 (6)C17—C181.384 (6)
C2—H2A0.9300C17—H170.9300
C3—C41.374 (5)C18—C191.365 (6)
C3—C61.513 (6)C18—H180.9300
C4—C51.365 (6)C19—C201.487 (6)
C4—H40.9300C21—C221.369 (6)
C5—H5A0.9300C21—C261.375 (6)
C6—C71.505 (5)C22—C231.378 (5)
C6—H6A0.9700C22—H220.9300
C6—H6B0.9700C23—C241.387 (6)
C7—C81.518 (6)C23—H230.9300
C7—H7A0.9700C24—C251.367 (6)
C7—H7B0.9700C24—C271.505 (6)
C8—C91.502 (5)C25—C261.377 (6)
C8—H8A0.9700C25—H250.9300
C8—H8B0.9700C26—H260.9300
C12—N1—C11114.4 (4)N1—C12—H12117.5
C1—N2—C5116.0 (4)C13—C12—H12117.5
C16—O1—C21121.5 (4)C9—C13—C12120.3 (5)
C20—O2—H2109.5C9—C13—H13119.9
C27—O5—H5109.5C12—C13—H13119.9
N2—C1—C2123.2 (5)C15—C14—C19121.6 (4)
N2—C1—H1118.4C15—C14—H14119.2
C2—C1—H1118.4C19—C14—H14119.2
C3—C2—C1120.3 (4)C16—C15—C14118.8 (4)
C3—C2—H2A119.9C16—C15—H15120.6
C1—C2—H2A119.9C14—C15—H15120.6
C4—C3—C2116.0 (4)C17—C16—C15120.3 (4)
C4—C3—C6120.2 (4)C17—C16—O1115.6 (4)
C2—C3—C6123.8 (4)C15—C16—O1123.7 (4)
C5—C4—C3120.2 (4)C16—C17—C18120.0 (4)
C5—C4—H4119.9C16—C17—H17120.0
C3—C4—H4119.9C18—C17—H17120.0
N2—C5—C4124.2 (4)C19—C18—C17120.7 (4)
N2—C5—H5A117.9C19—C18—H18119.6
C4—C5—H5A117.9C17—C18—H18119.6
C7—C6—C3116.9 (4)C18—C19—C14118.5 (4)
C7—C6—H6A108.1C18—C19—C20123.6 (4)
C3—C6—H6A108.1C14—C19—C20117.9 (4)
C7—C6—H6B108.1O3—C20—O2123.2 (4)
C3—C6—H6B108.1O3—C20—C19123.7 (5)
H6A—C6—H6B107.3O2—C20—C19113.1 (4)
C6—C7—C8112.9 (4)C22—C21—C26120.2 (4)
C6—C7—H7A109.0C22—C21—O1124.9 (4)
C8—C7—H7A109.0C26—C21—O1114.7 (4)
C6—C7—H7B109.0C21—C22—C23119.9 (4)
C8—C7—H7B109.0C21—C22—H22120.0
H7A—C7—H7B107.8C23—C22—H22120.0
C9—C8—C7115.6 (4)C22—C23—C24120.2 (4)
C9—C8—H8A108.4C22—C23—H23119.9
C7—C8—H8A108.4C24—C23—H23119.9
C9—C8—H8B108.4C25—C24—C23119.2 (4)
C7—C8—H8B108.4C25—C24—C27122.1 (4)
H8A—C8—H8B107.4C23—C24—C27118.7 (5)
C13—C9—C10116.1 (4)C24—C25—C26120.8 (4)
C13—C9—C8123.2 (4)C24—C25—H25119.6
C10—C9—C8120.6 (4)C26—C25—H25119.6
C11—C10—C9120.1 (4)C21—C26—C25119.7 (5)
C11—C10—H10120.0C21—C26—H26120.1
C9—C10—H10120.0C25—C26—H26120.1
N1—C11—C10124.2 (4)O4—C27—O5123.2 (5)
N1—C11—H11117.9O4—C27—C24124.1 (5)
C10—C11—H11117.9O5—C27—C24112.7 (5)
N1—C12—C13125.0 (5)
C5—N2—C1—C2−1.8 (7)C15—C16—C17—C18−1.5 (8)
N2—C1—C2—C31.2 (8)O1—C16—C17—C18−174.2 (4)
C1—C2—C3—C4−0.4 (7)C16—C17—C18—C190.8 (8)
C1—C2—C3—C6−178.7 (5)C17—C18—C19—C14−1.0 (7)
C2—C3—C4—C50.4 (7)C17—C18—C19—C20−179.6 (4)
C6—C3—C4—C5178.8 (4)C15—C14—C19—C182.1 (7)
C1—N2—C5—C41.8 (7)C15—C14—C19—C20−179.3 (4)
C3—C4—C5—N2−1.1 (8)C18—C19—C20—O3170.0 (5)
C4—C3—C6—C7169.8 (4)C14—C19—C20—O3−8.5 (7)
C2—C3—C6—C7−11.9 (7)C18—C19—C20—O2−11.6 (7)
C3—C6—C7—C8−177.5 (4)C14—C19—C20—O2169.8 (4)
C6—C7—C8—C9179.6 (4)C16—O1—C21—C2224.9 (7)
C7—C8—C9—C13−23.0 (7)C16—O1—C21—C26−160.3 (4)
C7—C8—C9—C10160.9 (4)C26—C21—C22—C232.0 (7)
C13—C9—C10—C110.9 (7)O1—C21—C22—C23176.6 (4)
C8—C9—C10—C11177.2 (4)C21—C22—C23—C24−1.5 (7)
C12—N1—C11—C10−1.6 (7)C22—C23—C24—C250.2 (7)
C9—C10—C11—N10.8 (7)C22—C23—C24—C27179.9 (4)
C11—N1—C12—C130.8 (7)C23—C24—C25—C260.5 (7)
C10—C9—C13—C12−1.7 (7)C27—C24—C25—C26−179.2 (4)
C8—C9—C13—C12−177.9 (4)C22—C21—C26—C25−1.3 (7)
N1—C12—C13—C90.9 (8)O1—C21—C26—C25−176.4 (4)
C19—C14—C15—C16−2.8 (8)C24—C25—C26—C210.0 (7)
C14—C15—C16—C172.4 (8)C25—C24—C27—O4178.6 (5)
C14—C15—C16—O1174.5 (4)C23—C24—C27—O4−1.1 (8)
C21—O1—C16—C17−144.3 (4)C25—C24—C27—O5−0.5 (7)
C21—O1—C16—C1543.3 (7)C23—C24—C27—O5179.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···N2i0.821.862.679 (5)174
O5—H5···N1ii0.821.752.566 (5)175
C4—H4···O3iii0.932.553.418 (6)155
C5—H5A···O3iv0.932.483.160 (6)130
C12—H12···O4v0.932.453.174 (7)135

Symmetry codes: (i) x−1, y, z−1; (ii) x+1, y+1, z; (iii) −x, −y+1, −z+1; (iv) x+1, y, z+1; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2224).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Desiraju, G. R. (2003). J. Mol. Struct.656, 5–15.
  • Li, G., Salim, C. & Hinode, H. (2008). Acta Cryst. E64, o2251. [PMC free article] [PubMed]
  • Ma, Z.-C., Ma, A.-Q. & Wang, G.-P. (2006). Acta Cryst. E62, o1165–o1166.
  • Shan, N., Bond, A. D. & Jones, W. (2002). Tetrahedron Lett 43, 3101–3104.
  • Shattock, T. R., Vishweshwar, P., Wang, Z. & Zaworotko, M. J. (2005). Cryst. Growth Des.5, 2046–2049.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography