PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1513.
Published online 2008 November 8. doi:  10.1107/S160053680803585X
PMCID: PMC2959902

[μ-2,2,4,4,6,6-Hexakis(3,5-dimethyl­pyrazol-1-yl)-2λ5,4λ5,6λ5-1,3,5,2,4,6-triaza­triphosphinine]bis­[bis­(nitrato- κ2 O,O′)cadmium(II)]

Abstract

The complete title complex, [Cd2(NO3)4(C30H42N15P3)], is generated by crystallographic twofold symmetry, with one P and one N atom of the cyclo­triphosphazene ligand located on the rotation axis. The non-planar cyclo­triphosphazene ring accommodates two Cd ions, and only four out of six exocylcic pyrazolyl ligands are bound to the Cd metal atoms. Each of these two symmetry-related Cd atoms is coordinated by two bidentate nitrato ligands, two exocylic pyrazolyl N atoms, and one cyclo­triphosphazene N atom.

Related literature

For background, see: Allen (1991 [triangle]); Byun et al. (1996 [triangle]); Chandrasekhar & Nagendran (2001 [triangle]); Mark et al. (2005 [triangle]); Thomas et al. (1997 [triangle] and references therein). For the synthesis of the ligand, see: Thomas et al. (1993 [triangle]). For related structures, see: Yun & Lee (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1513-scheme1.jpg

Experimental

Crystal data

  • [Cd2(NO3)4(C30H42N15P3)]
  • M r = 1178.54
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1513-efi1.jpg
  • a = 28.2418 (5) Å
  • b = 36.2033 (6) Å
  • c = 10.3673 (2) Å
  • V = 10600.0 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.96 mm−1
  • T = 296 (2) K
  • 0.30 × 0.14 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.851, T max = 0.908
  • 32426 measured reflections
  • 6260 independent reflections
  • 5122 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.112
  • S = 1.04
  • 6260 reflections
  • 299 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.85 e Å−3
  • Δρmin = −0.48 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 2758 Friedel pairs
  • Flack parameter: −0.02 (2)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803585X/hb2796sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803585X/hb2796Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This paper was supported by Samsung Research Fund, Sungkyumkwan University, 2008.

supplementary crystallographic information

Comment

Polyphosphazenes, linear or cyclic, are an important class of inorganic macromolecules (Mark et al., 2005), and various cyclotriphosphazene derivatives are frequently used as ligands for the preparation of their intriguing coordination and organometallic complexes (Allen, 1991; Chandrasekhar & Nagendran, 2001). Particular attention has been paid to the six-membered cyclotriphosphazene N3P3(3,5-Me2pz)6 (3,5-Me2pz = 3,5-dimethylpyrazolyl), due to its several potential donor sites such as the exocyxlic pyrazolyl nitrogen atoms and the central cyclotriphosphazene ring nitrogen and phosphorus atoms. This ligand binds to transition metals via (1) two non-geminal pyrazolyl N atoms (non-geminal N2 coordination), (2) two non-geminal pyrazolyl N atoms and one cyclotriphosphazene ring nitrogen (non-geminal N3 coordination), (3) two geminal pyrazolyl N atoms (geminal N2 coordination), or (4) two geminal pyrazolyl N atoms and one ring nitrogen (geminal N3 coordination) (Thomas et al., 1997). We recently reported the structure of a C3-symmetric tripalladium–cyclotriphosphazene complex, in which the cyclotriphosphazene exhibits the geminal N2 coordination mode (Yun & Lee, 2008). In this paper, we describe the preparation and structure of the title compound, (I), a dicadmium–cyclotriphosphazene complex [Cd2(NO3)4(N3P3(3,5-Me2pz)6)].

The molecular structure of (I) is given in Fig. 1, which demonstrates the non-geminal N3 coordination mode of the cyclotriphosphazene ligand. This molecule possesses a crystallographic 2-fold axis passing through the P2 and N2 atoms, which explains the Z value of 8 instead of 16. The cyclotriphosphazene ring is severely distorted from planarity with an average atomic displacement of 0.146 Å. Each Cd(II) metal is seven-coordinate and bonded to four O atoms from two nitrates, two N atoms from two imidazole rings, and one nitrogen atom from the cyclotriphosphazene ring (Table 1). Four imidazole N atoms coordinate to the two Cd metals to form four 5-membered (PdPN3) chelate rings. The fact that the cyclotriphosphazene ring accommodates only two rather than three Cd(NO3)2 units may be attributed to the steric bulk of the 7-coordinate Cd metals.

The Cd—Npyz bond lengths [2.265 (3)–2.311 (4) Å] are significantly shorter than the Cd—Nring bond length [2.546 (3) Å], indicating that the Cd ions interact more strongly with the imidazole N atoms than with the cyclotriphosphazene ring N atoms. Consistent with our expectation, the average P—Nring bond length [1.583 (3) Å] is considerably shorter than the average P—Npyz bond length [1.677 (3) Å]. The Cd···Cd separation is 7.0177 (6) Å, which is shorter than the corresponding separation (7.195 Å) observed in the chloro analogue [Cd2Cl4(N3P3(3,5-Me2pz)6)] (Byun et al., 1996).

Experimental

The ligand was prepared by the literature method (Thomas et al., 1993). An acetone (30 ml) solution containing Cd(NO3)2.4H2O (0.144 g, 0.75 mmol) and ligand N3P3(3,5-Me2pz)6 (0.176 g, 0.25 mmol) was stirred for 24 h at room temperature. The resulting white solution was filtered off, washed with diethyl ether (6 ml x 2) and then hexane (5 ml x 2) to give a white solid, which was crystallized from acetone/hexane (1:1 v/v) to yield colorless blocks of (I). IR (KBr, cm-1): 2964 (s), 2362 (m), 1576 (m), 1383 (s), 1260 (s), 1095 (s), 1028 (s), 805 (s). mp: 411–413 K.

Refinement

The hydrogen atoms were generated in ideal positions (C—H = 0.93–0.96Å) and refined in a riding model. The nitrato ligands are slightly disordered, but the disorder was not resolved and anisotropic refinement applying several possible site occupation factors was unstable. Site occupancy refinements of the nitrato atoms all yielded values close to unity.

Figures

Fig. 1.
The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms are omitted for clarity. Atoms with the suffix A are generated by the symmetry operation (–x, –y, z).

Crystal data

[Cd2(NO3)4(C30H42N15P3)]F000 = 4736
Mr = 1178.54Dx = 1.477 Mg m3
Orthorhombic, Fdd2Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 9939 reflections
a = 28.2418 (5) Åθ = 2.2–25.5º
b = 36.2033 (6) ŵ = 0.96 mm1
c = 10.3673 (2) ÅT = 296 (2) K
V = 10600.0 (3) Å3BLOCK, colourless
Z = 80.30 × 0.14 × 0.10 mm

Data collection

Bruker SMART CCD diffractometer6260 independent reflections
Radiation source: sealed tube5122 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 296(2) Kθmax = 28.4º
ω scansθmin = 2.2º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −36→28
Tmin = 0.851, Tmax = 0.908k = −48→40
32426 measured reflectionsl = −13→13

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044  w = 1/[σ2(Fo2) + (0.0676P)2 + 6.1853P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.112(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.85 e Å3
6260 reflectionsΔρmin = −0.48 e Å3
299 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 2758 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.02 (2)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd1−0.083094 (12)−0.072056 (9)0.52427 (3)0.05498 (12)
P1−0.04843 (3)−0.00189 (2)0.74616 (9)0.0339 (2)
P20.00000.00000.51827 (12)0.0311 (2)
O1−0.0099 (2)−0.0965 (2)0.6318 (6)0.1100 (19)
O2−0.0638 (3)−0.13446 (15)0.5667 (8)0.144 (3)
O3−0.0064 (4)−0.1554 (3)0.6716 (11)0.251 (7)
O4−0.1372 (4)−0.0530 (3)0.3622 (15)0.258 (8)
O5−0.1455 (4)−0.1014 (3)0.4113 (10)0.195 (5)
O6−0.1902 (3)−0.0824 (2)0.2697 (10)0.170 (4)
N1−0.04555 (11)−0.01150 (8)0.5958 (3)0.0357 (7)
N20.00000.00000.8214 (4)0.0408 (10)
N3−0.08391 (12)−0.03495 (9)0.8082 (3)0.0429 (8)
N4−0.10447 (12)−0.06131 (10)0.7314 (3)0.0450 (8)
N5−0.07821 (10)0.03652 (9)0.7738 (4)0.0431 (7)
N6−0.12225 (13)0.03751 (11)0.7149 (4)0.0512 (9)
N70.01317 (12)−0.03608 (9)0.4208 (3)0.0398 (7)
N8−0.02456 (14)−0.05705 (10)0.3775 (4)0.0490 (8)
N9−0.0244 (3)−0.1266 (3)0.6295 (8)0.114 (2)
N10−0.1568 (2)−0.07751 (19)0.3548 (8)0.0857 (18)
C1−0.10083 (18)−0.03802 (13)0.9323 (4)0.0536 (11)
C2−0.1308 (2)−0.06616 (15)0.9360 (5)0.0703 (15)
H2−0.1472−0.07481.00780.084*
C3−0.13292 (19)−0.08072 (14)0.8077 (5)0.0593 (12)
C4−0.0847 (3)−0.01309 (18)1.0404 (5)0.0837 (18)
H4A−0.06280.00481.00730.126*
H4B−0.0695−0.02761.10590.126*
H4C−0.1116−0.00071.07680.126*
C5−0.1598 (2)−0.11282 (18)0.7556 (7)0.0834 (18)
H5A−0.1533−0.11540.66520.125*
H5B−0.1931−0.10880.76810.125*
H5C−0.1504−0.13490.80010.125*
C6−0.07031 (19)0.06865 (11)0.8451 (4)0.0486 (10)
C7−0.11000 (19)0.08900 (14)0.8317 (5)0.0606 (12)
H7−0.11600.11190.86920.073*
C8−0.14106 (18)0.06886 (13)0.7490 (5)0.0607 (12)
C9−0.02660 (19)0.07712 (13)0.9190 (5)0.0615 (13)
H9A−0.00460.05710.91030.092*
H9B−0.03440.08041.00840.092*
H9C−0.01260.09940.88620.092*
C10−0.1886 (3)0.0808 (2)0.7004 (8)0.097 (2)
H10A−0.20160.06180.64640.146*
H10B−0.18530.10310.65150.146*
H10C−0.20940.08500.77220.146*
C110.05422 (16)−0.04550 (12)0.3580 (4)0.0465 (10)
C120.0421 (2)−0.07391 (11)0.2775 (5)0.0578 (12)
H120.0625−0.08680.22330.069*
C13−0.0061 (2)−0.07985 (12)0.2915 (4)0.0569 (12)
C140.10103 (19)−0.02914 (17)0.3787 (5)0.0659 (14)
H14A0.0987−0.00980.44160.099*
H14B0.1126−0.01910.29890.099*
H14C0.1225−0.04780.40910.099*
C15−0.0358 (3)−0.10831 (18)0.2264 (6)0.092 (2)
H15A−0.0680−0.10590.25460.138*
H15B−0.0242−0.13250.24810.138*
H15C−0.0342−0.10490.13470.138*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0606 (2)0.05662 (19)0.04776 (17)−0.02047 (15)0.00994 (15)−0.01297 (14)
P10.0381 (5)0.0323 (4)0.0314 (4)0.0014 (4)0.0036 (4)−0.0026 (3)
P20.0365 (6)0.0296 (5)0.0272 (5)0.0004 (5)0.0000.000
O10.095 (4)0.137 (5)0.098 (4)0.043 (4)0.016 (3)0.033 (4)
O20.189 (6)0.068 (3)0.176 (8)−0.022 (4)0.092 (6)−0.016 (4)
O30.258 (10)0.203 (8)0.292 (12)0.150 (8)0.168 (9)0.191 (9)
O40.165 (7)0.185 (8)0.422 (19)−0.087 (7)−0.175 (11)0.126 (11)
O50.226 (9)0.213 (10)0.146 (7)−0.137 (9)−0.036 (7)−0.002 (7)
O60.143 (6)0.135 (5)0.231 (9)−0.028 (4)−0.085 (7)−0.035 (6)
N10.0366 (16)0.0361 (15)0.0343 (15)−0.0021 (13)0.0017 (12)−0.0047 (12)
N20.046 (3)0.045 (2)0.031 (2)0.000 (2)0.0000.000
N30.0471 (19)0.0413 (18)0.0403 (18)−0.0063 (14)0.0082 (14)−0.0033 (14)
N40.0414 (18)0.0480 (18)0.0455 (18)−0.0091 (16)0.0084 (15)−0.0042 (15)
N50.0419 (16)0.0422 (16)0.0452 (17)0.0065 (13)−0.0021 (16)−0.0110 (15)
N60.0417 (19)0.057 (2)0.055 (2)0.0120 (16)−0.0053 (16)−0.0146 (17)
N70.0434 (18)0.0391 (17)0.0368 (15)0.0047 (14)0.0064 (14)−0.0042 (13)
N80.063 (2)0.0416 (18)0.0430 (18)−0.0095 (17)0.0077 (16)−0.0141 (15)
N90.114 (6)0.130 (7)0.098 (5)0.027 (6)0.063 (4)0.026 (5)
N100.072 (3)0.069 (4)0.116 (5)−0.033 (3)0.000 (3)−0.008 (3)
C10.065 (3)0.051 (2)0.045 (2)−0.009 (2)0.017 (2)−0.0054 (19)
C20.084 (4)0.069 (3)0.058 (3)−0.013 (3)0.033 (3)0.006 (2)
C30.060 (3)0.059 (3)0.059 (3)−0.018 (2)0.016 (2)0.002 (2)
C40.126 (5)0.085 (4)0.040 (3)−0.028 (4)0.021 (3)−0.013 (3)
C50.084 (4)0.087 (4)0.080 (4)−0.042 (3)0.016 (3)−0.003 (3)
C60.065 (3)0.039 (2)0.042 (2)0.0061 (19)0.002 (2)−0.0057 (16)
C70.064 (3)0.048 (3)0.070 (3)0.016 (2)−0.008 (2)−0.019 (2)
C80.059 (3)0.065 (3)0.058 (3)0.026 (2)0.003 (2)−0.013 (2)
C90.067 (3)0.051 (3)0.066 (3)−0.001 (2)−0.004 (3)−0.025 (2)
C100.078 (4)0.099 (5)0.114 (5)0.039 (4)−0.023 (4)−0.028 (4)
C110.055 (3)0.048 (2)0.0358 (19)0.0123 (19)0.0070 (18)0.0062 (17)
C120.079 (3)0.053 (2)0.042 (2)0.013 (2)0.012 (2)−0.008 (2)
C130.086 (3)0.044 (2)0.040 (2)−0.005 (2)0.016 (2)−0.0110 (19)
C140.049 (3)0.097 (4)0.052 (3)0.013 (3)0.010 (2)−0.007 (3)
C150.136 (6)0.072 (3)0.069 (3)−0.034 (4)0.019 (4)−0.036 (3)

Geometric parameters (Å, °)

Cd1—N12.546 (3)C1—C41.509 (7)
Cd1—N42.265 (3)C2—C31.432 (8)
Cd1—N82.311 (4)C2—H20.9300
Cd1—O12.509 (5)C3—C51.490 (8)
Cd1—O22.365 (6)C4—H4A0.9600
Cd1—O52.367 (8)C4—H4B0.9600
Cd1—O42.373 (9)C4—H4C0.9600
P1—N21.576 (2)C5—H5A0.9600
P1—N11.599 (3)C5—H5B0.9600
P1—N51.650 (3)C5—H5C0.9600
P1—N31.688 (3)C6—C71.349 (7)
P2—N11.573 (3)C6—C91.485 (7)
P2—N1i1.573 (3)C7—C81.427 (7)
P2—N7i1.693 (3)C7—H70.9300
P2—N71.693 (3)C8—C101.498 (8)
O1—N91.165 (11)C9—H9A0.9600
O2—N91.323 (11)C9—H9B0.9600
O3—N91.239 (10)C9—H9C0.9600
O4—N101.049 (9)C10—H10A0.9600
O5—N101.094 (12)C10—H10B0.9600
O6—N101.302 (10)C10—H10C0.9600
N2—P1i1.576 (2)C11—C121.368 (6)
N3—N41.372 (5)C11—C141.464 (8)
N3—C11.376 (6)C12—C131.386 (8)
N4—C31.328 (6)C12—H120.9300
N5—N61.386 (5)C13—C151.489 (7)
N5—C61.396 (5)C14—H14A0.9600
N6—C81.302 (5)C14—H14B0.9600
N7—C111.373 (5)C14—H14C0.9600
N7—N81.383 (5)C15—H15A0.9600
N8—C131.323 (6)C15—H15B0.9600
C1—C21.325 (7)C15—H15C0.9600
N4—Cd1—N8140.76 (12)C2—C1—N3108.1 (4)
N4—Cd1—O292.8 (2)C2—C1—C4129.1 (5)
N8—Cd1—O2100.51 (19)N3—C1—C4122.7 (4)
N4—Cd1—O5110.4 (3)C1—C2—C3106.4 (4)
N8—Cd1—O5108.2 (3)C1—C2—H2126.8
O2—Cd1—O580.4 (5)C3—C2—H2126.8
N4—Cd1—O4116.7 (4)N4—C3—C2109.5 (4)
N8—Cd1—O485.8 (4)N4—C3—C5120.3 (5)
O2—Cd1—O4123.8 (4)C2—C3—C5130.2 (5)
O5—Cd1—O445.7 (4)C1—C4—H4A109.5
N4—Cd1—O181.87 (16)C1—C4—H4B109.5
N8—Cd1—O177.65 (18)H4A—C4—H4B109.5
O2—Cd1—O152.5 (3)C1—C4—H4C109.5
O5—Cd1—O1132.4 (4)H4A—C4—H4C109.5
O4—Cd1—O1161.3 (4)H4B—C4—H4C109.5
N4—Cd1—N171.75 (11)C3—C5—H5A109.5
N8—Cd1—N172.03 (11)C3—C5—H5B109.5
O2—Cd1—N1132.3 (3)H5A—C5—H5B109.5
O5—Cd1—N1147.2 (4)C3—C5—H5C109.5
O4—Cd1—N1103.0 (3)H5A—C5—H5C109.5
O1—Cd1—N180.3 (2)H5B—C5—H5C109.5
N2—P1—N1116.61 (18)C7—C6—N5105.6 (4)
N2—P1—N5108.63 (13)C7—C6—C9129.1 (4)
N1—P1—N5112.25 (18)N5—C6—C9125.3 (4)
N2—P1—N3110.93 (16)C6—C7—C8107.1 (4)
N1—P1—N3104.34 (17)C6—C7—H7126.5
N5—P1—N3103.21 (17)C8—C7—H7126.5
N1—P2—N1i118.5 (2)N6—C8—C7111.0 (4)
N1—P2—N7i109.24 (16)N6—C8—C10121.7 (5)
N1i—P2—N7i106.30 (16)C7—C8—C10127.3 (4)
N1—P2—N7106.30 (16)C6—C9—H9A109.5
N1i—P2—N7109.24 (16)C6—C9—H9B109.5
N7i—P2—N7106.7 (2)H9A—C9—H9B109.5
N9—O1—Cd191.9 (6)C6—C9—H9C109.5
N9—O2—Cd194.6 (5)H9A—C9—H9C109.5
N10—O4—Cd198.5 (7)H9B—C9—H9C109.5
N10—O5—Cd197.3 (6)C8—C10—H10A109.5
P2—N1—P1118.8 (2)C8—C10—H10B109.5
P2—N1—Cd1114.81 (15)H10A—C10—H10B109.5
P1—N1—Cd1116.75 (16)C8—C10—H10C109.5
P1—N2—P1i120.7 (3)H10A—C10—H10C109.5
N4—N3—C1109.8 (3)H10B—C10—H10C109.5
N4—N3—P1121.5 (3)C12—C11—N7105.4 (4)
C1—N3—P1128.3 (3)C12—C11—C14128.2 (4)
C3—N4—N3106.2 (4)N7—C11—C14126.3 (4)
C3—N4—Cd1129.4 (3)C11—C12—C13107.3 (4)
N3—N4—Cd1123.9 (2)C11—C12—H12126.3
N6—N5—C6110.8 (3)C13—C12—H12126.3
N6—N5—P1113.7 (3)N8—C13—C12111.2 (4)
C6—N5—P1135.5 (3)N8—C13—C15121.0 (5)
C8—N6—N5105.6 (4)C12—C13—C15127.8 (5)
C11—N7—N8111.1 (3)C11—C14—H14A109.5
C11—N7—P2131.3 (3)C11—C14—H14B109.5
N8—N7—P2116.6 (2)H14A—C14—H14B109.5
C13—N8—N7104.9 (4)C11—C14—H14C109.5
C13—N8—Cd1125.4 (3)H14A—C14—H14C109.5
N7—N8—Cd1117.8 (2)H14B—C14—H14C109.5
O1—N9—O3129.7 (12)C13—C15—H15A109.5
O1—N9—O2120.5 (9)C13—C15—H15B109.5
O3—N9—O2109.7 (12)H15A—C15—H15B109.5
O4—N10—O5118.3 (10)C13—C15—H15C109.5
O4—N10—O6123.1 (10)H15A—C15—H15C109.5
O5—N10—O6117.9 (8)H15B—C15—H15C109.5

Symmetry codes: (i) −x, −y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2796).

References

  • Allen, C. W. (1991). Chem. Rev.91, 119–135.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Byun, Y. G., Min, D. W., Do, J. H., Yun, H. S. & Do, Y. K. (1996). Inorg. Chem.35, 3981–3989. [PubMed]
  • Chandrasekhar, V. & Nagendran, S. (2001). Chem. Soc. Rev.30, 193–203.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Mark, J. E., Allkock, H. R. & West, R. (2005). Inorganic Polymers, 2nd ed., pp. 62–153 New York: Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Thomas, K. R. J., Chandrasekhar, V., Pal, P., Scott, S. R., Hallford, R. & Cordes, A. W. (1993). Inorg. Chem.32, 606–611.
  • Thomas, K. R. J., Chandrasekhar, V., Zanello, P. & Laschi, F. (1997). Polyhedron, 16, 1003–1011.
  • Yun, S. Y. & Lee, S. W. (2008). Acta Cryst. E64, m1084. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography