PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2272.
Published online 2008 November 8. doi:  10.1107/S1600536808035009
PMCID: PMC2959899

5-Phenyl-7,8-dihydro-1,3-dioxano[4,5-g]isoquinoline

Abstract

In the title compound, C16H13NO2, the two benzene rings make a dihedral angle of 55.5 (2)°. The crystal packing is stabilized by inter­molecular C—H(...)O hydrogen bonds and weak π–π stacking inter­actions [centroid–centroid distance = 3.595 (3)Å], linking the mol­ecules into ladders of inversion dimers.

Related literature

For details of the biological activities of isoquinolinone compounds, see: Bentley (2000 [triangle]); Jayaraman et al. (2002 [triangle]). For the Bischler–Napieralski reaction, see: Bischler & Napieralski (1893 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2272-scheme1.jpg

Experimental

Crystal data

  • C16H13NO2
  • M r = 251.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2272-efi1.jpg
  • a = 8.5005 (17) Å
  • b = 8.5297 (17) Å
  • c = 10.143 (2) Å
  • α = 109.07 (3)°
  • β = 109.44 (2)°
  • γ = 99.70 (3)°
  • V = 622.9 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.28 × 0.10 × 0.08 mm

Data collection

  • Rigaku R-AXIS RAPID IP area-detector diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.976, T max = 0.993
  • 4801 measured reflections
  • 2145 independent reflections
  • 1275 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.143
  • S = 1.13
  • 2145 reflections
  • 173 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2004 [triangle]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808035009/hg2432sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808035009/hg2432Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Isoquinolinones are important compounds from both the synthetic and applied points of view. Their structures are incorporated in several alkaloids (Bentley, 20000 and other pharmacologically important compounds (Jayaraman et al., 2002). Of the variety of methods that have been developed for the synthesis of the isoquinoline ring system, the most commonly used procedure is the Bischler-Napieralski reaction (Bischler & Napieralski, 1893). We now wish to report an effective Bischler-Napieralski procedure for the synthesis of 1,2,3,4-tetrahydro-6,7-dimethoxy-1-phenylisoquinoline the title compound (I) and report its crystal structure here.

In compound (I), all bond lengths in the molecular are normal (Allen et al., 1987). The benzene ring C10–C15 and bonded atoms C7, C9, O1 and O2 are coplanar, the largest deviation from the mean plane being 0.039 (2)Å for atom O1. The other benzene ring, C1–C6, and bonded atoms C7 are also coplanar, the largest deviation from the mean plane being 0.032 (2)Å. The two benzene rings make a dihedral angle of 55.5 (2)°.

The relatively short distance of 3.595 (3) between the centroids of benzene ring C10—C15 and 1,3-dioxole ring C13/C14/C16/O1/O2 [at -x,1 - y,-z] indicates the presence of weak π-π interactions, The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds, linking the molecules into ladders of dimers.

Experimental

The title compound was synthesized by following Bischler-Napieralski procedures: 0.01 mol N-[2-(3, 4-methylenedioxy)phenyl]benzamide (synthesized by β-(3, 4-methylenedioxy)phenethylamine, Benzoyl chloride and Et3N) was dissolved in 20 ml CH3CN, 5 g POCl3 was added dropwise, the mixture was refluxed under N2 for 5 h, after cooled the volatiles were evaporated under vacuum, then water was added and adjusted the pH to 8, after extracted with CH2Cl2, the organic layers was washed with saturated NaCl and dried with Na2SO4, the product was isolated by evaporation of the solvent and recrystalization, 2.31 g, Yield: 92%. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethyl acetate at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.96 Å, with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 40% probability displacement ellipsoids for non-H atoms.

Crystal data

C16H13NO2Z = 2
Mr = 251.27F000 = 264
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.5005 (17) ÅCell parameters from 1451 reflections
b = 8.5297 (17) Åθ = 2.5–23.4º
c = 10.143 (2) ŵ = 0.09 mm1
α = 109.07 (3)ºT = 293 (2) K
β = 109.44 (2)ºBlock, colorless
γ = 99.70 (3)º0.28 × 0.10 × 0.08 mm
V = 622.9 (2) Å3

Data collection

Rigaku R-AXIS RAPID IP area-detector diffractometer2145 independent reflections
Radiation source: Rotating Anode1275 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.037
T = 293(2) Kθmax = 25.0º
ω oscillation scansθmin = 3.1º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.976, Tmax = 0.993k = −10→10
4801 measured reflectionsl = −11→12

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041  w = 1/[σ2(Fo2) + (0.0514P)2 + 0.1397P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.20 e Å3
2145 reflectionsΔρmin = −0.20 e Å3
173 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.048 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.9151 (2)0.7157 (2)1.18121 (17)0.0688 (6)
O20.6920 (2)0.4574 (2)1.01260 (17)0.0656 (6)
N10.8054 (3)0.6182 (3)0.5069 (2)0.0638 (6)
C10.5553 (3)0.2889 (4)0.3031 (3)0.0614 (7)
H1B0.52960.38080.27950.074*
C20.4741 (4)0.1204 (4)0.1932 (3)0.0734 (8)
H2A0.39380.09960.09610.088*
C30.5097 (4)−0.0172 (4)0.2247 (3)0.0772 (9)
H3A0.4550−0.13080.14960.093*
C40.6281 (4)0.0149 (4)0.3695 (3)0.0692 (8)
H4A0.6521−0.07790.39240.083*
C50.7107 (3)0.1825 (3)0.4798 (3)0.0579 (7)
H5A0.79140.20220.57650.069*
C60.6756 (3)0.3230 (3)0.4491 (2)0.0511 (6)
C70.7705 (3)0.5073 (3)0.5614 (2)0.0521 (6)
C80.9013 (4)0.7997 (3)0.6168 (3)0.0679 (8)
H8A0.81870.85700.64060.081*
H8B0.95730.86000.57020.081*
C91.0385 (4)0.8139 (3)0.7632 (3)0.0604 (7)
H9A1.12790.76640.74240.072*
H9B1.09430.93540.83510.072*
C100.9508 (3)0.7137 (3)0.8300 (2)0.0497 (6)
C110.8169 (3)0.5585 (3)0.7272 (2)0.0468 (6)
C120.7220 (3)0.4618 (3)0.7802 (2)0.0490 (6)
H12A0.63260.35750.71300.059*
C130.7659 (3)0.5266 (3)0.9336 (2)0.0492 (6)
C140.8994 (3)0.6795 (3)1.0347 (2)0.0510 (6)
C150.9955 (3)0.7752 (3)0.9871 (2)0.0525 (6)
H15A1.08710.87711.05660.063*
C160.7728 (4)0.5854 (4)1.1664 (3)0.0713 (8)
H16A0.81590.53181.23630.086*
H16B0.68820.63791.19180.086*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0833 (14)0.0751 (12)0.0399 (9)0.0155 (10)0.0240 (9)0.0202 (8)
O20.0861 (14)0.0677 (11)0.0470 (10)0.0158 (10)0.0377 (9)0.0221 (9)
N10.0805 (16)0.0671 (14)0.0497 (12)0.0199 (12)0.0329 (11)0.0267 (11)
C10.0513 (15)0.0779 (18)0.0514 (15)0.0196 (13)0.0185 (12)0.0255 (14)
C20.0562 (17)0.091 (2)0.0482 (15)0.0073 (15)0.0087 (12)0.0213 (15)
C30.080 (2)0.0689 (18)0.0552 (16)0.0037 (16)0.0187 (14)0.0116 (14)
C40.079 (2)0.0613 (16)0.0564 (16)0.0162 (14)0.0246 (14)0.0179 (13)
C50.0633 (16)0.0625 (15)0.0404 (13)0.0169 (13)0.0184 (11)0.0168 (12)
C60.0522 (15)0.0630 (15)0.0383 (12)0.0164 (12)0.0232 (10)0.0173 (11)
C70.0588 (16)0.0615 (15)0.0433 (12)0.0229 (12)0.0272 (11)0.0221 (12)
C80.087 (2)0.0622 (16)0.0626 (16)0.0183 (14)0.0396 (15)0.0296 (14)
C90.0646 (17)0.0594 (15)0.0592 (15)0.0142 (12)0.0327 (13)0.0223 (12)
C100.0498 (14)0.0533 (13)0.0471 (13)0.0170 (11)0.0226 (11)0.0190 (11)
C110.0517 (14)0.0525 (13)0.0393 (12)0.0180 (11)0.0220 (10)0.0186 (10)
C120.0533 (15)0.0522 (13)0.0427 (12)0.0180 (11)0.0221 (10)0.0178 (11)
C130.0587 (15)0.0553 (14)0.0405 (12)0.0199 (11)0.0273 (11)0.0202 (11)
C140.0596 (16)0.0587 (14)0.0359 (12)0.0255 (12)0.0197 (11)0.0178 (11)
C150.0507 (14)0.0560 (14)0.0458 (13)0.0150 (11)0.0187 (11)0.0171 (11)
C160.087 (2)0.0816 (19)0.0449 (14)0.0216 (16)0.0341 (14)0.0215 (14)

Geometric parameters (Å, °)

O1—C141.370 (3)C7—C111.481 (3)
O1—C161.427 (3)C8—C91.504 (4)
O2—C131.381 (3)C8—H8A0.9700
O2—C161.421 (3)C8—H8B0.9700
N1—C71.283 (3)C9—C101.499 (3)
N1—C81.465 (3)C9—H9A0.9700
C1—C21.375 (4)C9—H9B0.9700
C1—C61.391 (3)C10—C111.391 (3)
C1—H1B0.9300C10—C151.394 (3)
C2—C31.368 (4)C11—C121.406 (3)
C2—H2A0.9300C12—C131.359 (3)
C3—C41.380 (4)C12—H12A0.9300
C3—H3A0.9300C13—C141.376 (3)
C4—C51.372 (3)C14—C151.364 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C61.387 (3)C16—H16A0.9700
C5—H5A0.9300C16—H16B0.9700
C6—C71.487 (3)
C14—O1—C16105.44 (18)C10—C9—C8108.3 (2)
C13—O2—C16105.24 (18)C10—C9—H9A110.0
C7—N1—C8117.11 (19)C8—C9—H9A110.0
C2—C1—C6120.6 (3)C10—C9—H9B110.0
C2—C1—H1B119.7C8—C9—H9B110.0
C6—C1—H1B119.7H9A—C9—H9B108.4
C3—C2—C1120.9 (3)C11—C10—C15121.1 (2)
C3—C2—H2A119.6C11—C10—C9116.9 (2)
C1—C2—H2A119.6C15—C10—C9122.0 (2)
C2—C3—C4119.1 (3)C10—C11—C12120.3 (2)
C2—C3—H3A120.5C10—C11—C7117.7 (2)
C4—C3—H3A120.5C12—C11—C7121.8 (2)
C5—C4—C3120.5 (3)C13—C12—C11117.4 (2)
C5—C4—H4A119.7C13—C12—H12A121.3
C3—C4—H4A119.7C11—C12—H12A121.3
C4—C5—C6120.9 (2)C12—C13—C14121.9 (2)
C4—C5—H5A119.6C12—C13—O2128.3 (2)
C6—C5—H5A119.6C14—C13—O2109.77 (19)
C5—C6—C1118.0 (2)C15—C14—O1127.9 (2)
C5—C6—C7122.7 (2)C15—C14—C13122.1 (2)
C1—C6—C7119.0 (2)O1—C14—C13110.0 (2)
N1—C7—C11122.4 (2)C14—C15—C10117.2 (2)
N1—C7—C6116.7 (2)C14—C15—H15A121.4
C11—C7—C6120.8 (2)C10—C15—H15A121.4
N1—C8—C9112.5 (2)O2—C16—O1108.54 (19)
N1—C8—H8A109.1O2—C16—H16A110.0
C9—C8—H8A109.1O1—C16—H16A110.0
N1—C8—H8B109.1O2—C16—H16B110.0
C9—C8—H8B109.1O1—C16—H16B110.0
H8A—C8—H8B107.8H16A—C16—H16B108.4
C6—C1—C2—C3−0.1 (4)N1—C7—C11—C10−22.2 (4)
C1—C2—C3—C40.5 (5)C6—C7—C11—C10159.5 (2)
C2—C3—C4—C5−0.8 (5)N1—C7—C11—C12153.3 (3)
C3—C4—C5—C60.9 (4)C6—C7—C11—C12−25.0 (4)
C4—C5—C6—C1−0.5 (4)C10—C11—C12—C130.3 (4)
C4—C5—C6—C7−175.7 (2)C7—C11—C12—C13−175.0 (2)
C2—C1—C6—C50.1 (4)C11—C12—C13—C14−0.9 (4)
C2—C1—C6—C7175.6 (2)C11—C12—C13—O2179.4 (2)
C8—N1—C7—C112.5 (4)C16—O2—C13—C12−173.7 (3)
C8—N1—C7—C6−179.1 (2)C16—O2—C13—C146.5 (3)
C5—C6—C7—N1142.5 (3)C16—O1—C14—C15174.1 (3)
C1—C6—C7—N1−32.7 (3)C16—O1—C14—C13−5.3 (3)
C5—C6—C7—C11−39.2 (3)C12—C13—C14—C150.0 (4)
C1—C6—C7—C11145.6 (2)O2—C13—C14—C15179.8 (2)
C7—N1—C8—C937.6 (3)C12—C13—C14—O1179.4 (2)
N1—C8—C9—C10−56.4 (3)O2—C13—C14—O1−0.8 (3)
C8—C9—C10—C1137.8 (3)O1—C14—C15—C10−178.0 (2)
C8—C9—C10—C15−139.8 (3)C13—C14—C15—C101.3 (4)
C15—C10—C11—C121.0 (4)C11—C10—C15—C14−1.8 (4)
C9—C10—C11—C12−176.6 (2)C9—C10—C15—C14175.7 (2)
C15—C10—C11—C7176.5 (2)C13—O2—C16—O1−9.7 (3)
C9—C10—C11—C7−1.1 (3)C14—O1—C16—O29.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3A···O2i0.932.553.465 (4)169

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2432).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bentley, K. B. (2000). Nat. Prod. Rep.17, 247–268. [PubMed]
  • Bischler, A. & Napieralski, B. (1893). Chem. Ber.26, 1903.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Jayaraman, M., Fox, B. M., Hollingshead, M., Kohlhagen, G., Pommier, Y. & Cushman, M. (2002). J. Med. Chem.44, 242–249. [PubMed]
  • Rigaku (2004). RAPID-AUTO Rigaku Corporation, Takyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography