PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2397.
Published online 2008 November 20. doi:  10.1107/S1600536808037768
PMCID: PMC2959898

Methyl 2-(5-bromo-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Abstract

The title compound, C12H11BrO4S, was synthesized by the oxidation of methyl 2-(5-bromo-3-methyl­sulfanyl-1-benzofuran-2-yl)acetate with 3-chloro­peroxy­benzoic acid. The O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of the plane of the benzofuran ring system. The crystal structure is stabilized by C—H(...)π inter­actions, involving a methyl H atom and the benzene ring of a neighbouring mol­ecule, and by weak inter­molecular C—H(...)O hydrogen bonds.

Related literature

For the crystal structures of similar methyl 2-(3-methyl­sulfinyl-1-benzofuran-2-yl)acetate derivatives, see: Choi et al. (2008a [triangle],b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2397-scheme1.jpg

Experimental

Crystal data

  • C12H11BrO4S
  • M r = 331.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2397-efi1.jpg
  • a = 7.9696 (5) Å
  • b = 9.1146 (6) Å
  • c = 10.3100 (7) Å
  • α = 72.587 (1)°
  • β = 78.716 (1)°
  • γ = 69.082 (1)°
  • V = 664.17 (8) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.25 mm−1
  • T = 298 (2) K
  • 0.40 × 0.30 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999 [triangle]) T min = 0.327, T max = 0.530
  • 3786 measured reflections
  • 2560 independent reflections
  • 2084 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.099
  • S = 0.98
  • 2560 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.80 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808037768/su2077sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037768/su2077Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As a part of our ongoing research on the synthesis and structure of methyl 2-(3-methylsulfinyl-1-benzofuran-2-yl)acetate analogues, the crystal structure of methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008a) and methyl 2-(5-chloro-3-methylsulfinyl-1-benzofuran-2-yl) acetate (Choi et al., 2008b) have been reported. Here we describe the crystal structure of the title compound (I), synthesized by the oxidation of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate with 3-chloroperoxybenzoic acid.

The molecular structure of compound (I) is illustrated in Fig. 1. The benzofuran unit is essentially planar, with a mean deviation of 0.013 (2) Å from the least-squares plane defined by the nine constituent atoms.

The crystal packing of compound (I) (see Fig. 2) is stabilized by intermolecular C—H···π interactions between an H-atom of the C12-methyl group and the benzene ring of the benzofuran fragment, with a C12—H12B···Cgiv separation of 3.903 (4) Å (Fig. 2 and Table 1; Cg is the centroid of benzene ring C2–C7, symmetry codes as in Fig. 2). In addition, the molecular packing exhibits three intermolecular C—H···O hydrogen bonds (Fig. 2 & Table 1).

Experimental

77% 3-Chloroperoxybenzoic acid (190 mg, 0.85 mmol) was added in small portions to a stirred solution of methyl 2-(5-bromo-3-methylsulfanyl-1-benzofuran-2-yl)acetate (252 mg, 0.8 mmol) in dichloromethane (30 ml) at 273 K. After stirring for 3 h at rt, the mixture was washed with a saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (hexane-ethyl acetate 1:2, v/v) to afford compound (I) as a colorless solid [yield 86%, m.p. 405–406 K; Rf = 0.45 (hexane-ethyl acetate, 1:2, v/v)]. Single crystals, suitable for X-ray analysis, were prepared by evaporation of a solution of compound (I) in benzene at rt. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 3.06 (s, 3H), 3.75 (s, 3H), 4.04 (s, 2H), 7.34–7.53 (m, 2H), 7.44 (d, J = 8.80 Hz, 1H), 8.07 (d, J = 1.84 Hz, 1H); EI—MS 332 [M+2], 330[M+].

Refinement

All the H-atoms were geometrically positioned and refined using a riding model: C—H = 0.93 (aromatic), 0.97 (methylene), and 0.96 Å (methyl) H atoms, with Uiso(H) = 1.2Ueq(C) (aromatic & methylene), and 1.5Ueq(C) (methyl) H atoms.

Figures

Fig. 1.
The molecular structure of compound (I), showing the atom numbering scheme and displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
A view of the crystal packing of compound (I), showing the C—H···π and C—H···O interactions as dotted lines. Cg denotes the ring centroid. [Symmetry codes: (i) -x + 1, -y + 1, -zz; ...

Crystal data

C12H11BrO4SZ = 2
Mr = 331.18F000 = 332
Triclinic, P1Dx = 1.656 Mg m3
Hall symbol: -P 1Melting point = 405–406 K
a = 7.9696 (5) ÅMo Kα radiation λ = 0.71073 Å
b = 9.1146 (6) ÅCell parameters from 1892 reflections
c = 10.3100 (7) Åθ = 2.1–27.8º
α = 72.587 (1)ºµ = 3.25 mm1
β = 78.716 (1)ºT = 298 (2) K
γ = 69.082 (1)ºBlock, colourless
V = 664.17 (8) Å30.40 × 0.30 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer2560 independent reflections
Radiation source: fine-focus sealed tube2084 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.015
Detector resolution: 10.0 pixels mm-1θmax = 26.0º
T = 298(2) Kθmin = 2.5º
[var phi] and ω scansh = −9→5
Absorption correction: multi-scan(SADABS; Sheldrick, 1999)k = −11→11
Tmin = 0.327, Tmax = 0.530l = −12→12
3786 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.099  w = 1/[σ2(Fo2) + (0.0506P)2 + 0.5362P] where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
2560 reflectionsΔρmax = 0.35 e Å3
164 parametersΔρmin = −0.80 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.26775 (5)0.20066 (4)0.38327 (5)0.07396 (18)
S0.73771 (11)0.63026 (10)0.03527 (7)0.0505 (2)
O10.8367 (3)0.4636 (2)0.42105 (19)0.0450 (5)
O20.7437 (4)0.4993 (3)−0.0262 (2)0.0668 (7)
O31.0188 (3)0.8974 (3)0.2240 (3)0.0718 (7)
O40.7513 (3)0.8989 (3)0.1905 (3)0.0724 (7)
C10.7429 (4)0.5435 (3)0.2117 (3)0.0422 (6)
C20.6455 (4)0.4363 (3)0.2987 (3)0.0408 (6)
C30.5121 (4)0.3798 (3)0.2824 (3)0.0466 (7)
H30.46510.40890.19930.056*
C40.4537 (4)0.2784 (4)0.3965 (4)0.0510 (7)
C50.5227 (5)0.2305 (4)0.5228 (4)0.0550 (8)
H50.47960.16040.59640.066*
C60.6542 (4)0.2870 (4)0.5381 (3)0.0526 (8)
H60.70230.25660.62100.063*
C70.7117 (4)0.3904 (3)0.4254 (3)0.0419 (6)
C80.8535 (4)0.5552 (3)0.2893 (3)0.0413 (6)
C90.9848 (4)0.6447 (4)0.2609 (3)0.0473 (7)
H9A1.07420.61170.18770.057*
H9B1.04700.61450.34160.057*
C100.9012 (4)0.8259 (4)0.2215 (3)0.0483 (7)
C110.5088 (5)0.7628 (4)0.0366 (4)0.0637 (9)
H11A0.48340.8234−0.05510.096*
H11B0.49180.83630.09160.096*
H11C0.42850.69970.07400.096*
C120.9545 (7)1.0738 (5)0.1880 (7)0.1065 (18)
H12A1.04931.11330.19270.160*
H12B0.85271.11140.25060.160*
H12C0.91911.11310.09680.160*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0572 (2)0.0513 (2)0.1163 (4)−0.02436 (17)−0.0138 (2)−0.0133 (2)
S0.0535 (5)0.0626 (5)0.0392 (4)−0.0239 (4)−0.0121 (3)−0.0067 (3)
O10.0450 (11)0.0494 (11)0.0411 (10)−0.0113 (9)−0.0157 (9)−0.0094 (9)
O20.0746 (17)0.0842 (17)0.0506 (13)−0.0229 (14)−0.0132 (12)−0.0286 (12)
O30.0615 (15)0.0579 (14)0.108 (2)−0.0253 (12)−0.0235 (14)−0.0201 (14)
O40.0561 (15)0.0537 (14)0.103 (2)−0.0180 (12)−0.0308 (14)0.0016 (13)
C10.0433 (15)0.0454 (15)0.0412 (14)−0.0144 (13)−0.0090 (12)−0.0122 (12)
C20.0431 (15)0.0361 (14)0.0437 (15)−0.0096 (12)−0.0107 (12)−0.0105 (12)
C30.0475 (17)0.0398 (15)0.0533 (17)−0.0105 (13)−0.0115 (13)−0.0131 (13)
C40.0404 (16)0.0385 (15)0.073 (2)−0.0091 (13)−0.0074 (15)−0.0153 (15)
C50.0507 (18)0.0400 (16)0.0600 (19)−0.0085 (14)−0.0028 (15)−0.0010 (14)
C60.0524 (18)0.0459 (17)0.0472 (17)−0.0063 (14)−0.0094 (14)−0.0025 (13)
C70.0393 (15)0.0379 (14)0.0455 (15)−0.0044 (12)−0.0102 (12)−0.0117 (12)
C80.0424 (16)0.0395 (14)0.0429 (15)−0.0099 (12)−0.0103 (12)−0.0116 (12)
C90.0423 (16)0.0534 (17)0.0510 (16)−0.0155 (13)−0.0136 (13)−0.0142 (14)
C100.0496 (18)0.0541 (17)0.0458 (16)−0.0208 (15)−0.0087 (13)−0.0116 (14)
C110.063 (2)0.059 (2)0.066 (2)−0.0120 (17)−0.0275 (17)−0.0062 (17)
C120.100 (4)0.057 (2)0.175 (5)−0.034 (2)−0.038 (4)−0.019 (3)

Geometric parameters (Å, °)

Br—C41.898 (3)C4—C51.400 (5)
S—O21.493 (3)C5—C61.374 (5)
S—C11.755 (3)C5—H50.9300
S—C111.793 (4)C6—C71.376 (4)
O1—C71.370 (3)C6—H60.9300
O1—C81.375 (3)C8—C91.481 (4)
O3—C101.327 (4)C9—C101.501 (4)
O3—C121.454 (5)C9—H9A0.9700
O4—C101.195 (4)C9—H9B0.9700
C1—C81.350 (4)C11—H11A0.9600
C1—C21.451 (4)C11—H11B0.9600
C2—C31.391 (4)C11—H11C0.9600
C2—C71.395 (4)C12—H12A0.9600
C3—C41.377 (4)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
O2—S—C1106.07 (14)C6—C7—C2123.2 (3)
O2—S—C11106.21 (17)C1—C8—O1111.1 (2)
C1—S—C1198.55 (16)C1—C8—C9133.3 (3)
C7—O1—C8106.4 (2)O1—C8—C9115.6 (2)
C10—O3—C12116.0 (3)C8—C9—C10114.0 (2)
C8—C1—C2107.2 (3)C8—C9—H9A108.8
C8—C1—S124.7 (2)C10—C9—H9A108.8
C2—C1—S127.9 (2)C8—C9—H9B108.8
C3—C2—C7120.0 (3)C10—C9—H9B108.8
C3—C2—C1135.6 (3)H9A—C9—H9B107.7
C7—C2—C1104.4 (2)O4—C10—O3123.4 (3)
C4—C3—C2116.2 (3)O4—C10—C9126.2 (3)
C4—C3—H3121.9O3—C10—C9110.4 (3)
C2—C3—H3121.9S—C11—H11A109.5
C3—C4—C5123.5 (3)S—C11—H11B109.5
C3—C4—Br118.6 (3)H11A—C11—H11B109.5
C5—C4—Br117.9 (2)S—C11—H11C109.5
C6—C5—C4119.9 (3)H11A—C11—H11C109.5
C6—C5—H5120.0H11B—C11—H11C109.5
C4—C5—H5120.0O3—C12—H12A109.5
C5—C6—C7117.1 (3)O3—C12—H12B109.5
C5—C6—H6121.5H12A—C12—H12B109.5
C7—C6—H6121.5O3—C12—H12C109.5
O1—C7—C6125.9 (3)H12A—C12—H12C109.5
O1—C7—C2110.9 (2)H12B—C12—H12C109.5
O2—S—C1—C8131.5 (3)C5—C6—C7—C2−1.3 (5)
C11—S—C1—C8−118.8 (3)C3—C2—C7—O1−177.8 (2)
O2—S—C1—C2−42.4 (3)C1—C2—C7—O11.1 (3)
C11—S—C1—C267.3 (3)C3—C2—C7—C61.4 (4)
C8—C1—C2—C3177.9 (3)C1—C2—C7—C6−179.7 (3)
S—C1—C2—C3−7.3 (5)C2—C1—C8—O10.1 (3)
C8—C1—C2—C7−0.7 (3)S—C1—C8—O1−174.9 (2)
S—C1—C2—C7174.1 (2)C2—C1—C8—C9−179.8 (3)
C7—C2—C3—C4−0.3 (4)S—C1—C8—C95.1 (5)
C1—C2—C3—C4−178.8 (3)C7—O1—C8—C10.6 (3)
C2—C3—C4—C5−0.8 (4)C7—O1—C8—C9−179.5 (2)
C2—C3—C4—Br178.5 (2)C1—C8—C9—C1063.6 (4)
C3—C4—C5—C60.9 (5)O1—C8—C9—C10−116.3 (3)
Br—C4—C5—C6−178.4 (2)C12—O3—C10—O40.8 (5)
C4—C5—C6—C70.1 (5)C12—O3—C10—C9−179.9 (4)
C8—O1—C7—C6179.7 (3)C8—C9—C10—O4−12.9 (5)
C8—O1—C7—C2−1.1 (3)C8—C9—C10—O3167.7 (3)
C5—C6—C7—O1177.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.932.433.334 (4)163
C9—H9B···O1ii0.972.593.555 (3)171
C9—H9A···O2iii0.972.223.177 (4)169
C12—H12B···Cgiv0.962.993.903 (4)159

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+1, −z; (iv) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2077).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008a). Acta Cryst. E64, o1711. [PMC free article] [PubMed]
  • Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008b). Acta Cryst. E64, o2139. [PMC free article] [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Sheldrick, G. M. (1999). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography