PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1519–m1520.
Published online 2008 November 8. doi:  10.1107/S1600536808036167
PMCID: PMC2959897

Hexakis(μ2-2-amino­ethanethiol­ato)­triiron(III) tris(perchlorate)

Abstract

In the title salt, [Fe3(C2H6NS)6](ClO4)3, the trinuclear cation lies on a special position of An external file that holds a picture, illustration, etc.
Object name is e-64-m1519-efi14.jpg site symmetry; the central Fe atom is coordinated by six thiol­ate groups from the two flanking fac-(S)-[Fe(C2H6NS)3] units. In the flanking units, the three C2H6NS groups each chelate to the metal atom. The cations inter­act with the perchlorate anions through weak N—H(...)O hydrogen bonds resulting in a three-dimensional network. In the asymmetric unit two cations are present, one of which is disordered over two positions with occupancies of 0.75 and 0.25.

Related literature

For related structures, see: Busch & Jicha (1962 [triangle]); Heeg et al. (1985 [triangle]); Mahboob et al. (2004 [triangle]); Marsh et al. (1986 [triangle]); Matsuura et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1519-scheme1.jpg

Experimental

Crystal data

  • [Fe3(C2H6NS)6](ClO4)3
  • M r = 922.73
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-64-m1519-efi15.jpg
  • a = 14.2852 (6) Å
  • c = 26.2187 (8) Å
  • V = 4633.6 (2) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 2.12 mm−1
  • T = 200 (2) K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.677, T max = 0.816
  • 15327 measured reflections
  • 2365 independent reflections
  • 2144 reflections with I > 2σ(I)
  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.100
  • S = 1.39
  • 2365 reflections
  • 165 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 1.09 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection:PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004 [triangle]); program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: Yadokari-XG (Wakita, 2000 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808036167/ng2504sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036167/ng2504Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 20750047) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

supplementary crystallographic information

Comment

Due to the high Lewis basicity of thiolate groups, a great number of thiolate-bridged complexes have been synthesized up to now. 2-Aminoethanethiolate (aet) is the simplest N,S-chelating ligand that has been used for the formation of S-bridged polynuclear structures. For example, it has been shown that the aet ligand reacts with the octahedral metal ions to give linear-type S-bridged trinuclear structures, such as CoIII3 (Busch and Jicha, 1962; Heeg et al., 1985; Marsh et al., 1986), RhIII3 (Mahboob et al., 2004), and RuIII3 (Matsuura et al., 2006). In this paper, we report on the crystal structure of the title compound (I), which was obtained by the reaction of aet and Fe(ClO4)3. The asymmetric unit of the compound (I) contains two complex cations having a threefold rotation-inversion axis and one perchlorate anion. One of the complex cations is disordered over two positions with occupancies of 0.75 and 0.25. In the complex cation of (I), two fac(S)-[Fe(aet)3] units coordinate to a central Fe atom through thiolato bridges to form a linear-type trinuclear structure. Each terminal Fe atom is in an N3S3 octahedral environment, whereas the central Fe atom is in an S6 octahedral environment. Considering the charge balance, it is assumed that all Fe atoms have a +III oxidation state.

Experimental

To a solution containing 2-aminoethanethiol hydrochloride (0.11 g, 1 mmol) in 20 ml of methanol/CH2Cl2 (1:1) was added a solution of Et3N (0.10 g, 1 mmol) in 10 ml of methanol and a solution of Fe(ClO4)3.6H2O (0.09 g, 0.2 mmol) in 2 ml of methanol. The resulting dark brown solution was stood at room temperature overnight to give black crystals, which was filtered and washed with methanol. Yield: 31 mg (50% based on Fe). Anal. Calcd for [Fe3(aet)6](ClO4)3 = C12H36Cl3Fe3N6O12S6: C, 15.62; H, 3.93; N, 9.11%. Found: C, 15.82; H, 3.88; N, 9.00%.

Refinement

H atoms bonded to C and N atoms were placed at calculated positions [C—H = 0.99 and N—H = 0.92 Å] and refined as riding with Uiso(H) = 1.2Ueq (C,N). One cationic part was disordered over two positions (S2, N2, C3, C4 and S2B, N2B, C3B, C4B) and refined with site occupancies of 0.75 and 0.25. The C3B atom in a minor component was restrained based on ISOR.

Figures

Fig. 1.
The asymmetric unit of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen atoms are omitted for clarity.
Fig. 2.
The cation units of (I). The molecule with open bonds is the minor component of the disordered unit. Symmetry codes: (i) -y + 1, x-y + 1, z; (ii) -x + y, -x + 1, z; (iii) -x + 2/3, -y + 4/3, -z + 1/3; (iv) y - 1/3, -x + y+1/3, -z + 1/3; (v) x-y + 2/3, ...

Crystal data

[Fe3(C2H6NS)6](ClO4)3Z = 6
Mr = 922.73F000 = 2826
Trigonal, R3Dx = 1.984 Mg m3
Hall symbol: -R 3Mo Kα radiation λ = 0.71075 Å
a = 14.2852 (6) ÅCell parameters from 12827 reflections
b = 14.2852 Åθ = 3.4–27.4º
c = 26.2187 (8) ŵ = 2.12 mm1
α = 90ºT = 200 (2) K
β = 90ºPrism, black
γ = 120º0.20 × 0.20 × 0.10 mm
V = 4633.6 (2) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer2365 independent reflections
Radiation source: fine-focus sealed tube2144 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.053
Detector resolution: 10.00 pixels mm-1θmax = 27.4º
T = 200(2) Kθmin = 3.4º
ω scansh = −18→16
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −18→17
Tmin = 0.677, Tmax = 0.816l = −33→33
15327 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.100  w = 1/[σ2(Fo2) + (0.0456P)2 + 3.0528P] where P = (Fo2 + 2Fc2)/3
S = 1.39(Δ/σ)max = 0.001
2365 reflectionsΔρmax = 1.09 e Å3
165 parametersΔρmin = −0.31 e Å3
6 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The 2-aminoethanethiolate ligand of one unit containing Fe3 and Fe4 atoms is disordered over two positions with the occupancies of 0.75 and 0.25. The C3B atom in the minor component is restrained based on ISOR.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Fe10.33330.66670.16670.01712 (18)
Fe20.33330.66670.269870 (17)0.01673 (15)
S10.21510 (4)0.53292 (4)0.219319 (19)0.02149 (15)
N10.20358 (15)0.64420 (15)0.31253 (7)0.0255 (4)
H10.21510.63360.34600.031*
H20.19860.70590.31100.031*
C10.09906 (18)0.5506 (2)0.29524 (9)0.0308 (5)
H30.03820.55950.30710.037*
H40.09030.48280.31000.037*
C20.09795 (17)0.5441 (2)0.23732 (9)0.0302 (5)
H50.10260.60980.22220.036*
H60.03060.48020.22530.036*
Fe30.33330.66670.66670.02171 (19)
Fe40.33330.66670.563330 (19)0.02155 (16)
S20.20595 (6)0.53902 (6)0.61393 (3)0.02341 (18)0.75
N20.2103 (3)0.6563 (3)0.52058 (14)0.0300 (8)0.75
H70.21630.72340.51930.036*0.75
H80.21760.63770.48780.036*0.75
C30.0975 (3)0.5650 (4)0.59679 (17)0.0394 (9)0.75
H90.02670.50410.60760.047*0.75
H100.10830.63190.61350.047*0.75
C40.1011 (4)0.5773 (4)0.5393 (2)0.0425 (11)0.75
H110.07760.50620.52330.051*0.75
H120.04960.60110.52890.051*0.75
S2B0.2622 (3)0.7412 (2)0.61334 (10)0.0335 (5)0.25
N2B0.1951 (9)0.6067 (9)0.5199 (5)0.035 (3)0.25
H130.21270.63720.48790.041*0.25
H140.16550.53320.51630.041*0.25
C3B0.1180 (11)0.6301 (17)0.5950 (6)0.065 (4)0.25
H150.10360.55890.60780.078*0.25
H160.06380.64620.60980.078*0.25
C4B0.1130 (14)0.6295 (15)0.5432 (8)0.060 (5)0.25
H170.12570.70060.53110.072*0.25
H180.03990.57370.53210.072*0.25
Cl10.17461 (5)0.41937 (4)0.42062 (2)0.03377 (17)
O10.12758 (17)0.38390 (16)0.47031 (7)0.0460 (5)
O20.20389 (18)0.53133 (14)0.41480 (8)0.0492 (5)
O30.0981 (2)0.35574 (17)0.38241 (8)0.0604 (6)
O40.26978 (18)0.41114 (19)0.41632 (9)0.0583 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0171 (2)0.0171 (2)0.0173 (4)0.00853 (12)0.0000.000
Fe20.01850 (19)0.01850 (19)0.0132 (3)0.00925 (9)0.0000.000
S10.0233 (3)0.0207 (3)0.0166 (3)0.0081 (2)−0.00003 (18)0.00068 (17)
N10.0293 (10)0.0302 (10)0.0174 (9)0.0151 (8)0.0022 (7)0.0004 (7)
C10.0224 (11)0.0387 (13)0.0235 (12)0.0094 (10)0.0051 (8)0.0034 (9)
C20.0180 (10)0.0410 (13)0.0235 (11)0.0088 (10)0.0020 (8)0.0009 (9)
Fe30.0190 (2)0.0190 (2)0.0272 (4)0.00950 (12)0.0000.000
Fe40.0229 (2)0.0229 (2)0.0189 (3)0.01145 (10)0.0000.000
S20.0220 (4)0.0236 (4)0.0205 (4)0.0082 (3)−0.0005 (3)−0.0008 (3)
N20.0387 (19)0.033 (2)0.0200 (15)0.0197 (19)−0.0061 (12)−0.0045 (16)
C30.0233 (18)0.052 (2)0.040 (2)0.0165 (19)−0.0008 (14)0.001 (2)
C40.031 (2)0.060 (3)0.036 (2)0.023 (3)−0.0093 (15)−0.007 (2)
S2B0.0387 (15)0.0385 (14)0.0369 (14)0.0294 (14)−0.0028 (11)0.0001 (11)
N2B0.034 (5)0.030 (6)0.037 (5)0.014 (6)−0.011 (4)−0.014 (5)
C3B0.026 (6)0.124 (13)0.053 (8)0.043 (9)−0.010 (5)−0.014 (10)
C4B0.033 (7)0.066 (12)0.082 (12)0.026 (9)−0.018 (7)−0.014 (11)
Cl10.0459 (4)0.0229 (3)0.0229 (3)0.0100 (2)−0.0001 (2)0.00124 (19)
O10.0606 (13)0.0428 (11)0.0322 (10)0.0239 (10)0.0109 (9)0.0091 (8)
O20.0767 (15)0.0243 (9)0.0382 (12)0.0188 (9)−0.0039 (10)0.0027 (7)
O30.0780 (16)0.0390 (11)0.0502 (13)0.0188 (11)−0.0270 (11)−0.0113 (9)
O40.0501 (12)0.0571 (13)0.0655 (15)0.0252 (11)0.0103 (10)0.0076 (11)

Geometric parameters (Å, °)

Fe1—S1i2.2763 (5)Fe4—N2iii2.026 (4)
Fe1—S1ii2.2763 (5)Fe4—N2iv2.026 (4)
Fe1—S1iii2.2764 (5)Fe4—N2B2.059 (11)
Fe1—S12.2764 (5)Fe4—N2Biii2.059 (11)
Fe1—S1iv2.2764 (5)Fe4—N2Biv2.059 (11)
Fe1—S1v2.2764 (5)Fe4—S2B2.229 (2)
Fe2—N12.0482 (18)Fe4—S2Biii2.229 (2)
Fe2—N1iii2.0482 (18)Fe4—S2Biv2.229 (2)
Fe2—N1iv2.0482 (18)Fe4—S2iii2.2535 (7)
Fe2—S1iii2.2434 (6)Fe4—S22.2535 (8)
Fe2—S12.2434 (6)Fe4—S2iv2.2535 (7)
Fe2—S1iv2.2434 (6)S2—C31.821 (4)
S1—C21.821 (2)N2—C41.480 (7)
N1—C11.492 (3)N2—H70.9200
N1—H10.9200N2—H80.9200
N1—H20.9200C3—C41.514 (7)
C1—C21.521 (3)C3—H90.9900
C1—H30.9900C3—H100.9900
C1—H40.9900C4—H110.9900
C2—H50.9900C4—H120.9900
C2—H60.9900S2B—C3B1.929 (16)
Fe3—S2Bvi2.281 (2)N2B—C4B1.49 (2)
Fe3—S2B2.281 (2)N2B—H130.9200
Fe3—S2Biv2.281 (2)N2B—H140.9200
Fe3—S2Biii2.281 (2)C3B—C4B1.36 (3)
Fe3—S2Bvii2.281 (2)C3B—H150.9900
Fe3—S2Bviii2.281 (2)C3B—H160.9900
Fe3—S2viii2.2869 (7)C4B—H170.9900
Fe3—S2iii2.2869 (7)C4B—H180.9900
Fe3—S22.2869 (7)Cl1—O31.425 (2)
Fe3—S2iv2.2869 (7)Cl1—O41.426 (2)
Fe3—S2vi2.2870 (7)Cl1—O11.4369 (18)
Fe3—S2vii2.2870 (7)Cl1—O21.4447 (18)
Fe4—N22.026 (4)
S1i—Fe1—S1ii87.042 (18)N2—Fe4—N2iii92.34 (15)
S1i—Fe1—S1iii180.00 (3)N2—Fe4—N2iv92.34 (15)
S1ii—Fe1—S1iii92.959 (18)N2iii—Fe4—N2iv92.34 (15)
S1i—Fe1—S192.960 (18)N2B—Fe4—N2Biii92.4 (5)
S1ii—Fe1—S1180.0N2—Fe4—N2Biv103.6 (3)
S1iii—Fe1—S187.039 (18)N2iii—Fe4—N2Biv78.4 (3)
S1i—Fe1—S1iv92.961 (18)N2iv—Fe4—N2Biv17.7 (3)
S1ii—Fe1—S1iv92.961 (18)N2B—Fe4—N2Biv92.4 (5)
S1iii—Fe1—S1iv87.039 (18)N2Biii—Fe4—N2Biv92.4 (5)
S1—Fe1—S1iv87.039 (18)N2B—Fe4—S2B87.3 (3)
S1i—Fe1—S1v87.041 (18)N2Biii—Fe4—S2B91.5 (4)
S1ii—Fe1—S1v87.040 (18)N2Biv—Fe4—S2B176.1 (3)
S1iii—Fe1—S1v92.959 (18)N2B—Fe4—S2Biii176.1 (3)
S1—Fe1—S1v92.960 (18)N2Biii—Fe4—S2Biii87.3 (3)
S1iv—Fe1—S1v180.0N2Biv—Fe4—S2Biii91.5 (4)
N1—Fe2—N1iii93.02 (7)S2B—Fe4—S2Biii88.91 (9)
N1—Fe2—N1iv93.02 (7)N2B—Fe4—S2Biv91.5 (4)
N1iii—Fe2—N1iv93.02 (7)N2Biii—Fe4—S2Biv176.1 (3)
N1—Fe2—S1iii91.05 (5)N2Biv—Fe4—S2Biv87.3 (3)
N1iii—Fe2—S1iii87.26 (5)S2B—Fe4—S2Biv88.91 (9)
N1iv—Fe2—S1iii175.90 (5)S2Biii—Fe4—S2Biv88.91 (9)
N1—Fe2—S187.26 (5)N2—Fe4—S2iii91.91 (11)
N1iii—Fe2—S1175.90 (5)N2iii—Fe4—S2iii86.94 (11)
N1iv—Fe2—S191.05 (5)N2iv—Fe4—S2iii175.71 (11)
S1iii—Fe2—S188.65 (2)N2—Fe4—S286.94 (11)
N1—Fe2—S1iv175.90 (5)N2iii—Fe4—S2175.71 (11)
N1iii—Fe2—S1iv91.05 (5)N2iv—Fe4—S291.91 (11)
N1iv—Fe2—S1iv87.26 (5)S2iii—Fe4—S288.86 (3)
S1iii—Fe2—S1iv88.65 (2)N2—Fe4—S2iv175.71 (11)
S1—Fe2—S1iv88.65 (2)N2iii—Fe4—S2iv91.91 (11)
C2—S1—Fe296.07 (8)N2iv—Fe4—S2iv86.94 (11)
C2—S1—Fe1114.36 (8)S2iii—Fe4—S2iv88.86 (3)
Fe2—S1—Fe173.546 (18)S2—Fe4—S2iv88.86 (3)
C1—N1—Fe2113.33 (14)C3—S2—Fe496.60 (14)
C1—N1—H1108.9C3—S2—Fe3113.93 (15)
Fe2—N1—H1108.9Fe4—S2—Fe373.27 (2)
C1—N1—H2108.9C4—N2—Fe4114.7 (3)
Fe2—N1—H2108.9C4—N2—H7108.6
H1—N1—H2107.7Fe4—N2—H7108.6
N1—C1—C2109.46 (17)C4—N2—H8108.6
N1—C1—H3109.8Fe4—N2—H8108.6
C2—C1—H3109.8H7—N2—H8107.6
N1—C1—H4109.8C4—C3—S2106.6 (3)
C2—C1—H4109.8C4—C3—H9110.4
H3—C1—H4108.2S2—C3—H9110.4
C1—C2—S1106.38 (15)C4—C3—H10110.4
C1—C2—H5110.5S2—C3—H10110.4
S1—C2—H5110.5H9—C3—H10108.6
C1—C2—H6110.5N2—C4—C3112.4 (4)
S1—C2—H6110.5N2—C4—H11109.1
H5—C2—H6108.6C3—C4—H11109.1
S2Bvi—Fe3—S2B179.998 (1)N2—C4—H12109.1
S2Bvi—Fe3—S2Biv93.64 (9)C3—C4—H12109.1
S2B—Fe3—S2Biv86.37 (9)H11—C4—H12107.9
S2Bvi—Fe3—S2Biii93.64 (9)C3B—S2B—Fe490.9 (5)
S2B—Fe3—S2Biii86.37 (9)C3B—S2B—Fe3108.1 (6)
S2Biv—Fe3—S2Biii86.37 (9)Fe4—S2B—Fe373.83 (7)
S2Bvi—Fe3—S2Bvii86.36 (9)C4B—N2B—Fe4112.1 (9)
S2B—Fe3—S2Bvii93.63 (9)C4B—N2B—H13109.2
S2Biv—Fe3—S2Bvii180.00 (10)Fe4—N2B—H13109.2
S2Biii—Fe3—S2Bvii93.64 (9)C4B—N2B—H14109.2
S2Bvi—Fe3—S2Bviii86.36 (9)Fe4—N2B—H14109.2
S2B—Fe3—S2Bviii93.63 (9)H13—N2B—H14107.9
S2Biv—Fe3—S2Bviii93.64 (9)C4B—C3B—S2B106.6 (13)
S2Biii—Fe3—S2Bviii179.998 (1)C4B—C3B—H15110.4
S2Bvii—Fe3—S2Bviii86.36 (9)S2B—C3B—H15110.4
S2viii—Fe3—S2iii180.00 (5)C4B—C3B—H16110.4
S2viii—Fe3—S292.77 (3)S2B—C3B—H16110.4
S2iii—Fe3—S287.23 (3)H15—C3B—H16108.6
S2viii—Fe3—S2iv92.77 (3)C3B—C4B—N2B111.5 (14)
S2iii—Fe3—S2iv87.23 (3)C3B—C4B—H17109.3
S2—Fe3—S2iv87.23 (3)N2B—C4B—H17109.3
S2viii—Fe3—S2vi87.23 (3)C3B—C4B—H18109.3
S2iii—Fe3—S2vi92.77 (3)N2B—C4B—H18109.3
S2—Fe3—S2vi180.0H17—C4B—H18108.0
S2iv—Fe3—S2vi92.77 (3)O3—Cl1—O4110.49 (15)
S2viii—Fe3—S2vii87.23 (3)O3—Cl1—O1109.78 (14)
S2iii—Fe3—S2vii92.77 (3)O4—Cl1—O1109.85 (13)
S2—Fe3—S2vii92.77 (3)O3—Cl1—O2109.71 (13)
S2iv—Fe3—S2vii179.999 (1)O4—Cl1—O2108.82 (14)
S2vi—Fe3—S2vii87.23 (3)O1—Cl1—O2108.16 (12)
N1—Fe2—S1—C221.81 (10)S2viii—Fe3—S2—Fe4−136.322 (12)
N1iv—Fe2—S1—C2114.79 (9)S2iii—Fe3—S2—Fe443.680 (12)
S1iii—Fe2—S1—C2−69.30 (8)S2iv—Fe3—S2—Fe4−43.680 (12)
S1iv—Fe2—S1—C2−157.98 (8)S2vii—Fe3—S2—Fe4136.320 (12)
N1—Fe2—S1—Fe1135.45 (5)N2iii—Fe4—N2—C4−175.7 (3)
N1iv—Fe2—S1—Fe1−131.57 (5)N2iv—Fe4—N2—C491.9 (4)
S1iii—Fe2—S1—Fe144.341 (11)S2iii—Fe4—N2—C4−88.6 (3)
S1iv—Fe2—S1—Fe1−44.341 (11)S2—Fe4—N2—C40.1 (3)
S1i—Fe1—S1—C2−134.32 (9)Fe4—S2—C3—C444.5 (3)
S1iii—Fe1—S1—C245.68 (9)Fe3—S2—C3—C4119.0 (3)
S1iv—Fe1—S1—C2132.87 (8)Fe4—N2—C4—C330.6 (5)
S1v—Fe1—S1—C2−47.13 (8)S2—C3—C4—N2−51.4 (5)
S1i—Fe1—S1—Fe2136.408 (8)N2B—Fe4—S2B—C3B27.4 (7)
S1iii—Fe1—S1—Fe2−43.592 (8)N2Biii—Fe4—S2B—C3B119.7 (7)
S1iv—Fe1—S1—Fe243.592 (8)S2Biii—Fe4—S2B—C3B−153.1 (6)
S1v—Fe1—S1—Fe2−136.406 (8)S2Biv—Fe4—S2B—C3B−64.1 (6)
N1iii—Fe2—N1—C1−179.13 (15)N2B—Fe4—S2B—Fe3136.0 (4)
N1iv—Fe2—N1—C1−85.94 (19)N2Biii—Fe4—S2B—Fe3−131.7 (3)
S1iii—Fe2—N1—C193.56 (15)S2Biii—Fe4—S2B—Fe3−44.47 (4)
S1—Fe2—N1—C14.96 (15)S2Biv—Fe4—S2B—Fe344.47 (4)
Fe2—N1—C1—C2−37.5 (2)S2Biv—Fe3—S2B—C3B42.2 (5)
N1—C1—C2—S157.4 (2)S2Biii—Fe3—S2B—C3B128.8 (5)
Fe2—S1—C2—C1−46.89 (16)S2Bvii—Fe3—S2B—C3B−137.8 (5)
Fe1—S1—C2—C1−121.55 (14)S2Bviii—Fe3—S2B—C3B−51.2 (5)
N2—Fe4—S2—C3−23.37 (18)S2Biv—Fe3—S2B—Fe4−43.29 (4)
N2iv—Fe4—S2—C3−115.61 (18)S2Biii—Fe3—S2B—Fe443.29 (4)
S2iii—Fe4—S2—C368.61 (15)S2Bvii—Fe3—S2B—Fe4136.71 (4)
S2iv—Fe4—S2—C3157.50 (15)S2Bviii—Fe3—S2B—Fe4−136.71 (4)
N2—Fe4—S2—Fe3−136.42 (10)N2Biii—Fe4—N2B—C4B−96.9 (14)
N2iv—Fe4—S2—Fe3131.34 (11)N2Biv—Fe4—N2B—C4B170.6 (12)
S2iii—Fe4—S2—Fe3−44.441 (14)S2B—Fe4—N2B—C4B−5.5 (11)
S2iv—Fe4—S2—Fe344.441 (14)S2Biv—Fe4—N2B—C4B83.3 (11)
S2viii—Fe3—S2—C3133.80 (16)Fe4—S2B—C3B—C4B−54.2 (13)
S2iii—Fe3—S2—C3−46.20 (16)Fe3—S2B—C3B—C4B−127.5 (12)
S2iv—Fe3—S2—C3−133.55 (16)S2B—C3B—C4B—N2B59.4 (18)
S2vii—Fe3—S2—C346.45 (16)Fe4—N2B—C4B—C3B−32.3 (19)

Symmetry codes: (i) xy+2/3, x+1/3, −z+1/3; (ii) −x+2/3, −y+4/3, −z+1/3; (iii) −x+y, −x+1, z; (iv) −y+1, xy+1, z; (v) y−1/3, −x+y+1/3, −z+1/3; (vi) −x+2/3, −y+4/3, −z+4/3; (vii) y−1/3, −x+y+1/3, −z+4/3; (viii) xy+2/3, x+1/3, −z+4/3.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O20.922.283.130 (3)154
N1—H2···O3ix0.922.403.162 (3)140
N2—H7···O1iii0.922.303.110 (4)147
N2—H8···O20.922.393.274 (4)161
N2B—H13···O20.922.412.984 (12)121
N2B—H14···O10.922.273.112 (11)152

Symmetry codes: (ix) xy+1/3, x+2/3, −z+2/3; (iii) −x+y, −x+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2504).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Busch, D. C. & Jicha, D. C. (1962). Inorg. Chem.1, 884–887.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Heeg, M. J., Blinn, E. L. & Deutsch, E. (1985). Inorg. Chem.24, 1118–1120.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Mahboob, N., Miyashita, Y., Yamada, Y., Fujisawa, K. & Okamoto, K. (2004). Inorg. Chim. Acta, 357, 75–82.
  • Marsh, R. E., Heeg, M. J. & Deutsch, E. (1986). Inorg. Chem.25, 118.
  • Matsuura, N., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2006). Inorg. Chem.45, 401–408. [PubMed]
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wakita, K. (2000). Yadokari-XG Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography