PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2351.
Published online 2008 November 13. doi:  10.1107/S1600536808034430
PMCID: PMC2959896

Ethyl 1-(6-chloro-3-pyridylmeth­yl)-5-methyl-1H-1,2,3-triazole-4-carboxyl­ate

Abstract

In the title compound, C12H13ClN4O2, the triazole ring carries methyl and ethoxy­carbonyl groups, and is bound via a methyl­ene bridge to a chloro­pyridine unit. There is evidence for significant electron delocalization in the triazolyl system. Intra­molecular C—H(...)O and inter­molecular C—H(...)N hydrogen bonds stabilize the structure.

Related literature

For applications of triazoles, see: Abu-Orabi et al. (1989 [triangle]); Fan & Katritzky (1996 [triangle]); Dehne (1994 [triangle]); Wang et al. (1998 [triangle]). For bond-length data, see: Sasada (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2351-scheme1.jpg

Experimental

Crystal data

  • C12H13ClN4O2
  • M r = 280.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2351-efi1.jpg
  • a = 24.984 (4) Å
  • b = 4.3919 (8) Å
  • c = 12.040 (2) Å
  • β = 94.415 (2)°
  • V = 1317.2 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 291 (2) K
  • 0.46 × 0.38 × 0.33 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: none
  • 9219 measured reflections
  • 2450 independent reflections
  • 1991 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.105
  • S = 1.05
  • 2450 reflections
  • 174 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034430/at2655sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034430/at2655Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge financial support of this work by Yunyang Medical College, and acknowledge the Sophisticated Analytical Instrument Facility, Luoyang Normal University, Luoyan, for the data collection.

supplementary crystallographic information

Comment

[1,2,3]-Triazoles have been widely used in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition (Fan & Katritzky, 1996; Dehne,1994; Abu-Orabi et al., 1989). Since the structure-activity relationship is very useful in the rational design of pharmaceuticals and agrochemicals. We report here the crystal structure of the title compound, (I) (Fig. 1), which was synthesized by introducing pyridine rings into a 1,2,3-triazole molecular framework.

The C—N bonds are significantly shorter than a normal single C—N bond [1.47 Å; Sasada, 1984], and closer to the value for a C=N bond [1.28 Å; Wang et al., 1998]. This indicates significant electron delocalization in the triazolyl system.

Intramolecular C—H···O and intermolecular C—H···N hydrogen bonds contribute strongly to the stability of the molecular configuration (Table 1, Fig. 2).

Experimental

Ethyl acetylacetate (2 mmol) and 5-azidomethyl-2-chloropyridine (2 mmol) were added to a suspension of milled potassium carbonate (2 mmol) in DMSO (10 ml). The mixture was stirred at room temperature for 6 h (monitored by thin-layer chromatography) and poured to water (50 ml). The solid was collected by filtration, washed with water and diethyl ether, respectively, and dried to give 0.52 g of the title compound (yield 91%). Colourless crystals of (I) suitable for X-ray structure analysis were grown from acetone and petroleum ether (2:1, v/v).

Refinement

H atoms were placed at calculated positions, with C-H distances of 0.93 (aromatic CH), 0.97 (CH3) and 0.97Å (CH2). They were refined using a riding model, for methyl H atoms, Uiso(H) = 1.5Ueq(C); for all other H atoms, Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of the molecular structure of (I), showing the atom labelling schemeand with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A partial view of the crystal packing of (I), showing the formation of C—H···O and C—H···N hydrogen-bonds (dashed lines).

Crystal data

C12H13ClN4O2F000 = 584
Mr = 280.71Dx = 1.416 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3288 reflections
a = 24.984 (4) Åθ = 3.3–25.5º
b = 4.3919 (8) ŵ = 0.29 mm1
c = 12.040 (2) ÅT = 291 (2) K
β = 94.415 (2)ºBlock, colourless
V = 1317.2 (4) Å30.46 × 0.38 × 0.33 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer1991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Monochromator: graphiteθmax = 25.5º
T = 291(2) Kθmin = 3.3º
[var phi] and ω scansh = −30→29
Absorption correction: nonek = −5→5
9219 measured reflectionsl = −14→14
2450 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.105  w = 1/[σ2(Fo2) + (0.0461P)2 + 0.4886P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2450 reflectionsΔρmax = 0.19 e Å3
174 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.46436 (2)0.66788 (16)0.65329 (5)0.0704 (2)
O10.11409 (5)0.5500 (3)0.20263 (11)0.0531 (4)
O20.09737 (6)0.7643 (4)0.36514 (13)0.0737 (5)
N10.37666 (7)0.9857 (5)0.61900 (13)0.0649 (5)
N20.25163 (6)1.1289 (3)0.32725 (12)0.0424 (4)
N30.25643 (6)0.9861 (4)0.22765 (12)0.0489 (4)
N40.21318 (6)0.8240 (4)0.20603 (13)0.0471 (4)
C10.41512 (7)0.8561 (5)0.56801 (16)0.0484 (5)
C20.41911 (8)0.8610 (6)0.45476 (17)0.0593 (6)
H20.44730.76470.42280.071*
C30.37992 (8)1.0133 (6)0.39049 (16)0.0576 (6)
H30.38141.02150.31360.069*
C40.33851 (7)1.1538 (4)0.43968 (14)0.0426 (4)
C50.33924 (9)1.1340 (6)0.55394 (16)0.0625 (6)
H50.31181.23050.58850.075*
C60.29525 (8)1.3267 (5)0.37236 (17)0.0507 (5)
H6A0.28061.48110.41910.061*
H6B0.31091.42930.31130.061*
C70.20468 (7)1.0550 (4)0.36960 (14)0.0415 (4)
C80.18046 (7)0.8611 (4)0.29077 (14)0.0413 (4)
C90.18798 (9)1.1716 (5)0.47790 (16)0.0597 (6)
H9A0.20231.04220.53720.090*
H9B0.14951.17280.47640.090*
H9C0.20131.37480.48990.090*
C100.12697 (8)0.7226 (5)0.29187 (16)0.0477 (5)
C110.06017 (8)0.4189 (6)0.19684 (19)0.0606 (6)
H11A0.03360.57910.19990.073*
H11B0.05670.28240.25920.073*
C120.05159 (10)0.2481 (6)0.0894 (2)0.0700 (7)
H12A0.05550.38450.02830.105*
H12B0.01610.16230.08330.105*
H12C0.07760.08780.08780.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0538 (3)0.0928 (5)0.0629 (4)0.0083 (3)−0.0057 (2)0.0110 (3)
O10.0436 (7)0.0630 (9)0.0533 (8)−0.0077 (6)0.0074 (6)−0.0061 (7)
O20.0623 (9)0.1011 (13)0.0607 (9)−0.0154 (9)0.0240 (8)−0.0149 (9)
N10.0567 (10)0.1005 (15)0.0377 (9)0.0146 (10)0.0050 (8)−0.0002 (10)
N20.0477 (8)0.0423 (8)0.0367 (8)0.0002 (7)0.0010 (6)0.0047 (7)
N30.0515 (9)0.0565 (10)0.0392 (8)−0.0032 (8)0.0071 (7)−0.0004 (7)
N40.0486 (9)0.0538 (10)0.0391 (8)−0.0028 (8)0.0047 (7)−0.0002 (7)
C10.0432 (10)0.0573 (12)0.0444 (10)−0.0048 (9)0.0015 (8)0.0010 (9)
C20.0496 (11)0.0821 (16)0.0476 (11)0.0122 (11)0.0130 (9)−0.0023 (11)
C30.0568 (12)0.0809 (16)0.0362 (10)0.0054 (11)0.0110 (9)0.0024 (10)
C40.0457 (10)0.0429 (10)0.0392 (10)−0.0068 (8)0.0029 (7)−0.0024 (8)
C50.0570 (12)0.0909 (17)0.0404 (11)0.0193 (12)0.0078 (9)−0.0083 (11)
C60.0559 (11)0.0436 (11)0.0515 (11)−0.0048 (9)−0.0017 (9)0.0015 (9)
C70.0480 (10)0.0422 (10)0.0342 (9)0.0067 (8)0.0022 (7)0.0066 (8)
C80.0448 (10)0.0443 (10)0.0349 (9)0.0038 (8)0.0034 (7)0.0052 (8)
C90.0690 (13)0.0692 (15)0.0416 (11)0.0010 (12)0.0092 (9)−0.0065 (10)
C100.0468 (10)0.0517 (11)0.0447 (10)0.0020 (9)0.0050 (8)0.0046 (9)
C110.0448 (11)0.0683 (14)0.0692 (14)−0.0100 (10)0.0085 (10)−0.0011 (11)
C120.0587 (13)0.0816 (17)0.0690 (15)−0.0187 (12)0.0004 (11)−0.0038 (13)

Geometric parameters (Å, °)

Cl1—C11.748 (2)C4—C61.505 (3)
O1—C101.334 (2)C5—H50.9300
O1—C111.462 (2)C6—H6A0.9700
O2—C101.208 (2)C6—H6B0.9700
N1—C11.310 (3)C7—C81.380 (3)
N1—C51.341 (3)C7—C91.490 (3)
N2—C71.354 (2)C8—C101.469 (3)
N2—N31.367 (2)C9—H9A0.9600
N2—C61.465 (2)C9—H9B0.9600
N3—N41.303 (2)C9—H9C0.9600
N4—C81.365 (2)C11—C121.496 (3)
C1—C21.375 (3)C11—H11A0.9700
C2—C31.374 (3)C11—H11B0.9700
C2—H20.9300C12—H12A0.9600
C3—C41.377 (3)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C4—C51.377 (3)
C10—O1—C11115.24 (15)N2—C7—C8103.62 (15)
C1—N1—C5116.16 (17)N2—C7—C9123.82 (17)
C7—N2—N3110.96 (15)C8—C7—C9132.56 (18)
C7—N2—C6130.06 (16)N4—C8—C7109.36 (16)
N3—N2—C6118.97 (15)N4—C8—C10123.69 (16)
N4—N3—N2107.36 (14)C7—C8—C10126.89 (16)
N3—N4—C8108.69 (15)C7—C9—H9A109.5
N1—C1—C2124.75 (19)C7—C9—H9B109.5
N1—C1—Cl1116.01 (15)H9A—C9—H9B109.5
C2—C1—Cl1119.23 (16)C7—C9—H9C109.5
C3—C2—C1117.59 (18)H9A—C9—H9C109.5
C3—C2—H2121.2H9B—C9—H9C109.5
C1—C2—H2121.2O2—C10—O1123.45 (18)
C2—C3—C4120.15 (18)O2—C10—C8123.52 (19)
C2—C3—H3119.9O1—C10—C8113.02 (16)
C4—C3—H3119.9O1—C11—C12107.99 (17)
C5—C4—C3116.66 (18)O1—C11—H11A110.1
C5—C4—C6121.56 (17)C12—C11—H11A110.1
C3—C4—C6121.77 (17)O1—C11—H11B110.1
N1—C5—C4124.68 (19)C12—C11—H11B110.1
N1—C5—H5117.7H11A—C11—H11B108.4
C4—C5—H5117.7C11—C12—H12A109.5
N2—C6—C4112.53 (15)C11—C12—H12B109.5
N2—C6—H6A109.1H12A—C12—H12B109.5
C4—C6—H6A109.1C11—C12—H12C109.5
N2—C6—H6B109.1H12A—C12—H12C109.5
C4—C6—H6B109.1H12B—C12—H12C109.5
H6A—C6—H6B107.8
C7—N2—N3—N40.3 (2)N3—N2—C7—C8−0.43 (19)
C6—N2—N3—N4179.64 (15)C6—N2—C7—C8−179.72 (17)
N2—N3—N4—C80.0 (2)N3—N2—C7—C9179.32 (17)
C5—N1—C1—C2−0.5 (3)C6—N2—C7—C90.0 (3)
C5—N1—C1—Cl1179.07 (18)N3—N4—C8—C7−0.3 (2)
N1—C1—C2—C30.1 (4)N3—N4—C8—C10177.11 (17)
Cl1—C1—C2—C3−179.46 (17)N2—C7—C8—N40.5 (2)
C1—C2—C3—C4−0.1 (3)C9—C7—C8—N4−179.3 (2)
C2—C3—C4—C50.5 (3)N2—C7—C8—C10−176.87 (17)
C2—C3—C4—C6179.1 (2)C9—C7—C8—C103.4 (3)
C1—N1—C5—C41.0 (4)C11—O1—C10—O21.9 (3)
C3—C4—C5—N1−1.0 (4)C11—O1—C10—C8−177.09 (17)
C6—C4—C5—N1−179.6 (2)N4—C8—C10—O2−177.4 (2)
C7—N2—C6—C493.0 (2)C7—C8—C10—O2−0.4 (3)
N3—N2—C6—C4−86.3 (2)N4—C8—C10—O11.6 (3)
C5—C4—C6—N2−96.2 (2)C7—C8—C10—O1178.57 (17)
C3—C4—C6—N285.3 (2)C10—O1—C11—C12176.97 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···N3i0.932.573.479 (3)164
C9—H9A···N4ii0.962.593.523 (3)164
C9—H9B···O20.962.543.114 (3)119

Symmetry codes: (i) x, −y+5/2, z+1/2; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2655).

References

  • Abu-Orabi, S. T., Alfah, M. A., Jibril, I., Mari’i, F. M. & Ali, A. A. S. (1989). J. Heterocycl. Chem.26, 1461–1468.
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dehne, H. (1994). In Methoden der Organischen Chemie (Houben-Weyl), Vol. E8d, edited by E. Schumann, pp. 305–405. Stuttgart: Thieme.
  • Fan, W.-Q. & Katritzky, A. R. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 4, edited by A. R. Katritzky, C. W. Rees & E. F. V Scriven, pp. 1–126. Oxford: Pergamon.
  • Sasada, Y. (1984). Molecular and Crystal Structures In Chemistry Handbook, 3rd ed. Tokyo: The Chemical Society of Japan, Maruzen.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z., Jian, F., Duan, C., Bai, Z. & You, X. (1998). Acta Cryst. C54, 1927–1929.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography