PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2400.
Published online 2008 November 20. doi:  10.1107/S1600536808038336
PMCID: PMC2959891

Methyl 2-[2-(2,6-dichloro­anilino)­phenyl]­acetate

Abstract

In the title compound, C15H13Cl2NO2, the dihedral angle between the aromatic rings is 63.80 (12)°. The conformation may be stabilized by a weak N—H(...)O hydrogen bond. In the crystal structure, a short C—Cl(...)π interaction occurs, with a Cl(...)π separation of 3.5706 (13) Å.

Related literature

For general background, see: Hashem et al. (2007 [triangle]); Husain et al. (2005 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2400-scheme1.jpg

Experimental

Crystal data

  • C15H13Cl2NO2
  • M r = 310.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2400-efi1.jpg
  • a = 4.9319 (4) Å
  • b = 20.0288 (14) Å
  • c = 14.5542 (10) Å
  • β = 97.711 (1)°
  • V = 1424.66 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.46 mm−1
  • T = 173 (2) K
  • 0.38 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.850, T max = 1.000 (expected range = 0.776–0.913)
  • 8526 measured reflections
  • 3423 independent reflections
  • 2777 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.171
  • S = 1.04
  • 3423 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.52 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808038336/pv2122sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808038336/pv2122Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Esters are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005), oxadiazoles and triazoles (Hashem et al., 2007). In view of the versatility of these compounds, we have synthesized the title compound and report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The planar ester group (O1/O2/C13/C14/C15) is oriented with respect to the plane of the benzene ring (C7–C12) at an angle 41.33 (2)°. There is a short intramolecular N—H···O hydrogen bond (Table 1) and a π-ring interaction of the type C—Cl···Cg with Cl1···Cg1 (centroid of C1–C6 ring) perpendicular distance 3.5706 (13) Å.

Experimental

A mixture of 2-(2,6-dichlorophenylamino)benzoic acid (2.81 g, 10 mmol) and absolute methanol (50 ml) in the presence of a few drops of sulfuric acid was refluxed for 5 h. The excess of the solvent was removed by distillation. The solid residue was filltered off, washed with water and recystallized from ethanol (30%) to give the title compound. Suitable single crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature. (Yield, 88%; m.p. 331–332 K)

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å and C—H = 0.93, 0.97 and 0.96 Å for aryl, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(methyl C) and 1.2Ueq(aryl and methylene C and O)

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-numbering scheme; thermal ellipsoids have been plotted at 50% probability level.
Fig. 2.
The formation of the title compound.

Crystal data

C15H13Cl2NO2F000 = 640
Mr = 310.16Dx = 1.446 Mg m3
Monoclinic, P21/nMelting point: 331 K
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 4.9319 (4) ÅCell parameters from 9949 reflections
b = 20.0288 (14) Åθ = 2.4–28.3º
c = 14.5542 (10) ŵ = 0.46 mm1
β = 97.711 (1)ºT = 173 (2) K
V = 1424.66 (18) Å3Block, pale yellow
Z = 40.38 × 0.24 × 0.20 mm

Data collection

Bruker SMART APEXII CCD diffractometer3423 independent reflections
Radiation source: fine-focus sealed tube2777 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 173(2) Kθmax = 28.3º
ω and [var phi] scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −6→6
Tmin = 0.850, Tmax = 1.000k = −26→26
8526 measured reflectionsl = −19→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.171  w = 1/[σ2(Fo2) + (0.1042P)2 + 0.5254P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3423 reflectionsΔρmax = 0.62 e Å3
181 parametersΔρmin = −0.52 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.8063 (4)0.18670 (11)0.42183 (15)0.0459 (5)
C20.9559 (6)0.23352 (14)0.47685 (18)0.0592 (7)
H2A0.94010.23610.54110.071*
C31.1298 (6)0.27691 (13)0.4384 (2)0.0646 (7)
H3A1.23650.30840.47640.077*
C41.1462 (6)0.27396 (11)0.3451 (2)0.0572 (6)
H4A1.25860.30460.31780.069*
C50.9985 (5)0.22618 (10)0.29100 (16)0.0454 (5)
C60.8295 (4)0.17922 (9)0.32730 (13)0.0386 (4)
C70.6955 (4)0.06202 (9)0.29122 (13)0.0360 (4)
C80.8988 (5)0.03457 (12)0.35515 (15)0.0468 (5)
H8A1.03480.06240.38790.056*
C90.9027 (6)−0.03407 (14)0.37114 (18)0.0614 (7)
H9A1.0410−0.05290.41530.074*
C100.7088 (7)−0.07451 (13)0.3237 (2)0.0676 (8)
H10A0.7142−0.12130.33470.081*
C110.5040 (5)−0.04753 (12)0.25957 (19)0.0549 (6)
H11A0.3696−0.07590.22710.066*
C120.4948 (4)0.02126 (10)0.24258 (14)0.0388 (4)
C130.2660 (4)0.04998 (12)0.17557 (15)0.0434 (5)
H13A0.19750.09070.20330.052*
H13B0.11400.01730.16700.052*
C140.3438 (4)0.06753 (10)0.08154 (14)0.0374 (4)
C150.1597 (4)0.09199 (12)−0.07671 (14)0.0433 (5)
H15A−0.02260.0958−0.11250.065*
H15B0.26260.0566−0.10320.065*
H15C0.25700.1345−0.07890.065*
Cl10.57692 (13)0.13766 (4)0.47192 (4)0.0602 (2)
Cl21.01835 (17)0.22543 (3)0.17271 (4)0.0654 (2)
N10.6851 (4)0.13126 (8)0.27114 (12)0.0425 (4)
H1A0.58200.14470.22050.051*
O10.5844 (3)0.07442 (10)0.06748 (12)0.0591 (5)
O20.1341 (3)0.07623 (9)0.01586 (12)0.0550 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0417 (11)0.0525 (12)0.0422 (11)0.0138 (9)0.0005 (8)−0.0030 (9)
C20.0595 (15)0.0663 (15)0.0479 (12)0.0187 (12)−0.0069 (10)−0.0198 (11)
C30.0656 (16)0.0500 (13)0.0718 (17)0.0071 (11)−0.0138 (13)−0.0208 (12)
C40.0564 (14)0.0363 (10)0.0754 (17)−0.0006 (9)−0.0040 (12)−0.0007 (10)
C50.0512 (12)0.0358 (9)0.0473 (11)0.0055 (8)−0.0006 (9)0.0021 (8)
C60.0373 (10)0.0373 (9)0.0385 (10)0.0064 (7)−0.0048 (7)−0.0008 (7)
C70.0370 (9)0.0388 (9)0.0331 (9)0.0030 (7)0.0075 (7)0.0035 (7)
C80.0460 (11)0.0554 (12)0.0386 (10)0.0100 (9)0.0045 (8)0.0072 (9)
C90.0735 (17)0.0627 (15)0.0506 (13)0.0289 (13)0.0176 (12)0.0193 (11)
C100.097 (2)0.0419 (12)0.0690 (17)0.0124 (13)0.0313 (16)0.0124 (11)
C110.0661 (15)0.0420 (11)0.0606 (14)−0.0056 (10)0.0230 (12)0.0000 (10)
C120.0384 (10)0.0412 (10)0.0385 (10)−0.0019 (7)0.0111 (8)0.0003 (7)
C130.0311 (9)0.0565 (12)0.0430 (11)−0.0068 (8)0.0073 (8)−0.0036 (9)
C140.0286 (9)0.0407 (9)0.0436 (10)−0.0040 (7)0.0075 (7)−0.0060 (8)
C150.0329 (10)0.0601 (12)0.0359 (10)−0.0045 (8)0.0005 (7)0.0023 (8)
Cl10.0537 (4)0.0771 (4)0.0521 (4)0.0141 (3)0.0159 (3)0.0074 (3)
Cl20.0911 (5)0.0551 (4)0.0509 (4)−0.0072 (3)0.0123 (3)0.0118 (2)
N10.0489 (10)0.0383 (8)0.0363 (8)−0.0016 (7)−0.0084 (7)0.0037 (6)
O10.0273 (7)0.1015 (14)0.0486 (9)−0.0057 (7)0.0057 (6)0.0102 (9)
O20.0413 (8)0.0703 (11)0.0532 (10)−0.0023 (7)0.0060 (7)−0.0026 (8)

Geometric parameters (Å, °)

C1—C21.381 (3)C9—C101.367 (5)
C1—C61.404 (3)C9—H9A0.9500
C1—Cl11.731 (3)C10—C111.390 (4)
C2—C31.390 (4)C10—H10A0.9500
C2—H2A0.9500C11—C121.399 (3)
C3—C41.371 (4)C11—H11A0.9500
C3—H3A0.9500C12—C131.503 (3)
C4—C51.383 (3)C13—C141.511 (3)
C4—H4A0.9500C13—H13A0.9900
C5—C61.406 (3)C13—H13B0.9900
C5—Cl21.738 (2)C14—O11.239 (2)
C6—N11.393 (3)C14—O21.322 (3)
C7—C81.387 (3)C15—O21.406 (3)
C7—C121.400 (3)C15—H15A0.9800
C7—N11.417 (2)C15—H15B0.9800
C8—C91.394 (4)C15—H15C0.9800
C8—H8A0.9500N1—H1A0.8800
C2—C1—C6122.2 (2)C9—C10—H10A119.8
C2—C1—Cl1118.01 (19)C11—C10—H10A119.8
C6—C1—Cl1119.72 (17)C10—C11—C12120.3 (2)
C1—C2—C3120.1 (2)C10—C11—H11A119.8
C1—C2—H2A120.0C12—C11—H11A119.8
C3—C2—H2A120.0C11—C12—C7118.7 (2)
C4—C3—C2119.5 (2)C11—C12—C13119.7 (2)
C4—C3—H3A120.2C7—C12—C13121.54 (18)
C2—C3—H3A120.2C12—C13—C14114.64 (16)
C3—C4—C5119.8 (3)C12—C13—H13A108.6
C3—C4—H4A120.1C14—C13—H13A108.6
C5—C4—H4A120.1C12—C13—H13B108.6
C4—C5—C6122.8 (2)C14—C13—H13B108.6
C4—C5—Cl2118.4 (2)H13A—C13—H13B107.6
C6—C5—Cl2118.79 (16)O1—C14—O2122.7 (2)
N1—C6—C1123.1 (2)O1—C14—C13122.73 (18)
N1—C6—C5121.52 (19)O2—C14—C13114.61 (16)
C1—C6—C5115.29 (19)O2—C15—H15A109.5
C8—C7—C12120.44 (19)O2—C15—H15B109.5
C8—C7—N1121.95 (19)H15A—C15—H15B109.5
C12—C7—N1117.59 (17)O2—C15—H15C109.5
C7—C8—C9119.7 (2)H15A—C15—H15C109.5
C7—C8—H8A120.1H15B—C15—H15C109.5
C9—C8—H8A120.1C6—N1—C7123.53 (16)
C10—C9—C8120.5 (2)C6—N1—H1A118.2
C10—C9—H9A119.8C7—N1—H1A118.2
C8—C9—H9A119.8C14—O2—C15124.07 (17)
C9—C10—C11120.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.882.643.152 (2)118

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2122).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmagd, W. S. I. (2007). Eur. J. Med. Chem.42, 934–939. [PubMed]
  • Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem.40, 1394–1404. [PubMed]
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography