PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): m1541–m1542.
Published online 2008 November 13. doi:  10.1107/S1600536808036635
PMCID: PMC2959884

{4,4′-Dibromo-2,2′-[2,2-dimethyl­propane-1,3-diylbis(nitrilo­methyl­idyne)]diphenolato-κ4 O,N,N′,O′}copper(II)

Abstract

In the title compound, [Cu(C19H18Br2N2O2)], the CuII ion is in a tetra­hedrally distorted planar geometry, involving two N and two O atoms from the tetra­dentate Schiff base ligand. Inter­molecular C—H(...)O hydrogen bonds form an eight-membered R 2 2(8) motif. The dihedral angle betwen two benzene rings is 36.34 (9)°. There are inter­molecular Cu(...)Br [3.4566 (5) Å] and Cu(...)·N [3.569 (3) Å] contacts, which are significantly shorter than the sum of van der Waals radii of the relevant atoms. These inter­actions, along with the inter­molecular C—H(...)π and π–π [centroid–centroid distances of 3.709 (1) and 3.968 (2) Å] inter­actions, link neighbouring mol­ecules into a one-dimensional infinite chain along the c axis.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For values of van der Waals radii, see: Bondi (1964 [triangle]). For related structures, see: Arıcı et al. (2001 [triangle]); Elmali et al. (2000 [triangle]); Hodgson (1975 [triangle]); Granovski et al. (1993 [triangle]). For the application of transition-metal complexes with Schiff base ligands, see: Blower (1998 [triangle]); Shahrokhian et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-m1541-scheme1.jpg

Experimental

Crystal data

  • [Cu(C19H18Br2N2O2)]
  • M r = 529.71
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-m1541-efi2.jpg
  • a = 9.1416 (3) Å
  • b = 9.6398 (3) Å
  • c = 11.5382 (3) Å
  • α = 75.210 (2)°
  • β = 78.913 (2)°
  • γ = 73.435 (2)°
  • V = 934.42 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 5.46 mm−1
  • T = 100.0 (1) K
  • 0.41 × 0.21 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.195, T max = 0.443
  • 29164 measured reflections
  • 5410 independent reflections
  • 4345 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.093
  • S = 1.07
  • 5410 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 1.27 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808036635/hy2161sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808036635/hy2161Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support.

supplementary crystallographic information

Comment

Schiff base complexes are some of the most important stereochemical models in transition metal coordination chemistry, with their ease of preparation and structural variations (Elmali et al., 2000; Granovski et al.,1993). Transition metal complexes of Schiff base ligands are always of interest since they exhibit a marked tendency to oligomerize, thus leading to novel structural types, and also display a wide variety of magnetic properties (Blower, 1998; Shahrokhian et al., 2000). Many of the reported structural investigations of these complexes are discussed in some details in a review (Hodgson, 1975). Tetradentate Schiff base metal complexes may form trans or cis planar or tetrahedral structures (Elmali et al., 2000).

In the title compound (Fig. 1), the CuII ion shows a planar geometry distorted towards tetrahedral, which is defined by two imine N atoms and two phenolate O atoms of the tetradentate Schiff base ligand (Table 1). Intermolecular C—H···O hydrogen bonds form an eight-membered ring R22(8) motif (Fig. 2) (Bernstein et al., 1995). The bond lengths are within the normal ranges (Allen et al., 1987) and are comparable with the related structure (Arici et al., 2001). The dihedral angle between two benzene rings is 36.34 (9)°. The chelate ring composed of Cu1, N1, C8, C9, C10 and N2 atoms has a distorted boat conformation with puckering paremeters of Q = 0.807 (3) Å, Θ = 91.1 (2)° and Φ = 264.58 (17)°. The interesting feature of the crystal structure is short intermolecular Cu1···Br1iii [3.4566 (5) Å] and Cu1···N2ii [3.569 (3) Å] interactions [symmetry codes: (ii) 1 - x, -y, 1 - z; (iii) 1 - x, -y, 2 - z], which are significantly shorter than the sum of van der Waals radii of the relevant atoms [Cu: 2.32; Br: 1.85; N: 1.55 Å (Bondi, 1964; Spek, 2003)]. These interactions along with the intermolecular C—H···π (Table 2) and π–π interactions [centroid–centroid distances: Cg2···Cg3iii = 3.709 (1) and Cg2···Cg2iii = 3.968 (2) Å; Cg2 = centroid of the C1–C6 ring and Cg3 = centroid of the Cu1, N1, O1, C1, C6, C7 ring] link the neighbouring molecules into one-dimensional infinite chains along the c axis (Fig. 3).

Experimental

The title compound was prepared based on the reported method (Arici et al., 2001). Single crystals suitable for X-ray analysis were obtained from an ethanol solution at room temperature.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C). The highest difference peak is located 0.81 Å from Br2 and the deepest hole is located 0.76 Å from Cu1.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis, showing the hydrogen-bond motif R22(8).
Fig. 3.
The crystal packing of the title compound, viewed down the b axis, showing one-dimensional infinite chains along the c axis. Intermolecular Cu···Br and Cu···N interactions are shown as dashed lines.

Crystal data

[Cu(C19H18Br2N2O2)]Z = 2
Mr = 529.71F000 = 522
Triclinic, P1Dx = 1.883 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 9.1416 (3) ÅCell parameters from 9921 reflections
b = 9.6398 (3) Åθ = 2.2–33.8º
c = 11.5382 (3) ŵ = 5.46 mm1
α = 75.210 (2)ºT = 100.0 (1) K
β = 78.913 (2)ºBlock, red
γ = 73.435 (2)º0.41 × 0.21 × 0.15 mm
V = 934.42 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5410 independent reflections
Radiation source: fine-focus sealed tube4345 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.037
T = 100.0(1) Kθmax = 30.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −12→12
Tmin = 0.195, Tmax = 0.443k = −13→13
29164 measured reflectionsl = −16→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.093  w = 1/[σ2(Fo2) + (0.0524P)2 + 0.5947P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
5410 reflectionsΔρmax = 1.27 e Å3
235 parametersΔρmin = −0.61 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.60215 (4)0.07295 (3)0.63222 (3)0.01866 (8)
Br10.15151 (3)−0.15996 (3)1.22034 (2)0.02498 (8)
Br20.80441 (4)0.43866 (3)−0.00230 (2)0.02942 (9)
O10.4262 (2)0.1481 (2)0.73927 (16)0.0210 (4)
O20.5974 (2)0.2636 (2)0.53114 (17)0.0226 (4)
N10.6688 (3)−0.1090 (2)0.7503 (2)0.0195 (4)
N20.6996 (3)−0.0301 (2)0.5008 (2)0.0193 (4)
C10.3696 (3)0.0739 (3)0.8409 (2)0.0187 (5)
C20.2233 (3)0.1404 (3)0.8980 (2)0.0216 (5)
H2A0.17010.23360.86040.026*
C30.1577 (3)0.0712 (3)1.0073 (2)0.0222 (5)
H3A0.06170.11761.04230.027*
C40.2363 (3)−0.0692 (3)1.0654 (2)0.0209 (5)
C50.3765 (3)−0.1391 (3)1.0130 (2)0.0202 (5)
H5A0.4274−0.23251.05200.024*
C60.4441 (3)−0.0708 (3)0.9004 (2)0.0182 (5)
C70.5935 (3)−0.1509 (3)0.8535 (2)0.0195 (5)
H7A0.6390−0.24020.90190.023*
C80.8231 (3)−0.1986 (3)0.7167 (3)0.0220 (5)
H8A0.8583−0.27070.78770.026*
H8B0.8935−0.13470.68890.026*
C90.8276 (3)−0.2804 (3)0.6167 (2)0.0215 (5)
C100.7088 (3)−0.1897 (3)0.5308 (2)0.0208 (5)
H10A0.7350−0.22620.45660.025*
H10B0.6084−0.20490.56770.025*
C110.7379 (3)0.0315 (3)0.3905 (2)0.0191 (5)
H11A0.7818−0.03040.33640.023*
C120.7183 (3)0.1880 (3)0.3441 (2)0.0184 (5)
C130.7662 (3)0.2337 (3)0.2195 (2)0.0200 (5)
H13A0.81380.16300.17340.024*
C140.7432 (3)0.3807 (3)0.1663 (2)0.0206 (5)
C150.6701 (3)0.4888 (3)0.2346 (2)0.0221 (5)
H15A0.65340.58870.19750.026*
C160.6231 (3)0.4473 (3)0.3559 (2)0.0221 (5)
H16A0.57550.52020.39990.027*
C170.6454 (3)0.2960 (3)0.4160 (2)0.0193 (5)
C180.7856 (3)−0.4283 (3)0.6727 (3)0.0255 (6)
H18A0.7886−0.47820.60980.038*
H18B0.6840−0.41060.71650.038*
H18C0.8580−0.48890.72680.038*
C190.9898 (3)−0.3061 (3)0.5469 (3)0.0267 (6)
H19A0.9944−0.35650.48410.040*
H19B1.0627−0.36530.60110.040*
H19C1.0142−0.21240.51180.040*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02588 (17)0.01331 (15)0.01503 (15)−0.00383 (12)−0.00011 (12)−0.00300 (12)
Br10.03447 (15)0.02289 (14)0.01814 (13)−0.01260 (11)0.00257 (10)−0.00364 (10)
Br20.04858 (18)0.01898 (14)0.01683 (13)−0.00907 (12)0.00283 (11)−0.00148 (10)
O10.0275 (9)0.0161 (9)0.0166 (9)−0.0040 (7)0.0010 (7)−0.0029 (7)
O20.0316 (10)0.0154 (9)0.0182 (9)−0.0037 (8)0.0001 (7)−0.0036 (7)
N10.0240 (11)0.0159 (10)0.0180 (10)−0.0030 (8)−0.0029 (8)−0.0047 (9)
N20.0282 (11)0.0131 (10)0.0166 (10)−0.0057 (8)−0.0023 (8)−0.0032 (8)
C10.0268 (13)0.0156 (11)0.0162 (11)−0.0069 (10)−0.0036 (9)−0.0055 (9)
C20.0268 (13)0.0164 (12)0.0211 (13)−0.0055 (10)−0.0031 (10)−0.0031 (10)
C30.0245 (13)0.0219 (13)0.0217 (13)−0.0070 (10)−0.0001 (10)−0.0080 (11)
C40.0287 (13)0.0198 (12)0.0161 (12)−0.0103 (10)−0.0011 (10)−0.0037 (10)
C50.0286 (13)0.0170 (12)0.0160 (12)−0.0079 (10)−0.0029 (10)−0.0027 (10)
C60.0251 (12)0.0154 (11)0.0155 (11)−0.0062 (9)−0.0023 (9)−0.0045 (10)
C70.0258 (13)0.0154 (11)0.0171 (12)−0.0039 (10)−0.0046 (10)−0.0028 (10)
C80.0236 (12)0.0184 (12)0.0230 (13)−0.0033 (10)−0.0027 (10)−0.0048 (11)
C90.0262 (13)0.0162 (12)0.0213 (13)−0.0040 (10)−0.0029 (10)−0.0042 (10)
C100.0302 (13)0.0137 (11)0.0185 (12)−0.0066 (10)−0.0011 (10)−0.0036 (10)
C110.0256 (12)0.0147 (11)0.0170 (12)−0.0049 (9)−0.0026 (9)−0.0037 (9)
C120.0227 (12)0.0152 (11)0.0175 (12)−0.0057 (9)−0.0010 (9)−0.0040 (10)
C130.0246 (12)0.0187 (12)0.0173 (12)−0.0057 (10)−0.0012 (10)−0.0056 (10)
C140.0272 (13)0.0188 (12)0.0158 (12)−0.0082 (10)−0.0014 (10)−0.0021 (10)
C150.0303 (14)0.0137 (11)0.0212 (13)−0.0059 (10)−0.0039 (10)−0.0011 (10)
C160.0289 (13)0.0147 (12)0.0217 (13)−0.0043 (10)0.0001 (10)−0.0056 (10)
C170.0232 (12)0.0162 (11)0.0181 (12)−0.0052 (9)−0.0013 (9)−0.0038 (10)
C180.0361 (15)0.0163 (12)0.0230 (13)−0.0064 (11)−0.0042 (11)−0.0020 (11)
C190.0269 (14)0.0234 (14)0.0287 (15)−0.0048 (11)0.0008 (11)−0.0083 (12)

Geometric parameters (Å, °)

Cu1—O21.9027 (19)C8—H8A0.9700
Cu1—O11.9146 (18)C8—H8B0.9700
Cu1—N11.948 (2)C9—C181.530 (4)
Cu1—N21.955 (2)C9—C191.531 (4)
Br1—C41.902 (3)C9—C101.535 (4)
Br2—C141.901 (3)C10—H10A0.9700
O1—C11.305 (3)C10—H10B0.9700
O2—C171.303 (3)C11—C121.437 (4)
N1—C71.286 (3)C11—H11A0.9300
N1—C81.467 (3)C12—C131.413 (4)
N2—C111.287 (3)C12—C171.432 (3)
N2—C101.470 (3)C13—C141.366 (4)
C1—C21.422 (4)C13—H13A0.9300
C1—C61.425 (4)C14—C151.405 (4)
C2—C31.379 (4)C15—C161.373 (4)
C2—H2A0.9300C15—H15A0.9300
C3—C41.402 (4)C16—C171.420 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.371 (4)C18—H18A0.9600
C5—C61.411 (4)C18—H18B0.9600
C5—H5A0.9300C18—H18C0.9600
C6—C71.442 (4)C19—H19A0.9600
C7—H7A0.9300C19—H19B0.9600
C8—C91.544 (4)C19—H19C0.9600
O2—Cu1—O192.77 (8)C19—C9—C10110.3 (2)
O2—Cu1—N1160.11 (9)C18—C9—C8110.1 (2)
O1—Cu1—N193.32 (9)C19—C9—C8108.4 (2)
O2—Cu1—N293.40 (8)C10—C9—C8110.7 (2)
O1—Cu1—N2151.78 (9)N2—C10—C9113.6 (2)
N1—Cu1—N290.14 (9)N2—C10—H10A108.8
C1—O1—Cu1126.57 (17)C9—C10—H10A108.8
C17—O2—Cu1128.01 (16)N2—C10—H10B108.8
C7—N1—C8119.4 (2)C9—C10—H10B108.8
C7—N1—Cu1125.97 (19)H10A—C10—H10B107.7
C8—N1—Cu1114.58 (17)N2—C11—C12125.4 (2)
C11—N2—C10118.7 (2)N2—C11—H11A117.3
C11—N2—Cu1125.90 (18)C12—C11—H11A117.3
C10—N2—Cu1114.85 (16)C13—C12—C17120.1 (2)
O1—C1—C2118.6 (2)C13—C12—C11116.7 (2)
O1—C1—C6124.7 (2)C17—C12—C11123.1 (2)
C2—C1—C6116.7 (2)C14—C13—C12120.7 (2)
C3—C2—C1122.2 (3)C14—C13—H13A119.7
C3—C2—H2A118.9C12—C13—H13A119.7
C1—C2—H2A118.9C13—C14—C15120.3 (2)
C2—C3—C4119.7 (2)C13—C14—Br2119.65 (19)
C2—C3—H3A120.1C15—C14—Br2120.0 (2)
C4—C3—H3A120.1C16—C15—C14120.2 (2)
C5—C4—C3120.3 (2)C16—C15—H15A119.9
C5—C4—Br1119.8 (2)C14—C15—H15A119.9
C3—C4—Br1119.8 (2)C15—C16—C17121.8 (2)
C4—C5—C6120.7 (3)C15—C16—H16A119.1
C4—C5—H5A119.7C17—C16—H16A119.1
C6—C5—H5A119.7O2—C17—C16118.9 (2)
C5—C6—C1120.4 (2)O2—C17—C12124.1 (2)
C5—C6—C7116.8 (2)C16—C17—C12117.0 (2)
C1—C6—C7122.7 (2)C9—C18—H18A109.5
N1—C7—C6125.3 (2)C9—C18—H18B109.5
N1—C7—H7A117.3H18A—C18—H18B109.5
C6—C7—H7A117.3C9—C18—H18C109.5
N1—C8—C9112.7 (2)H18A—C18—H18C109.5
N1—C8—H8A109.0H18B—C18—H18C109.5
C9—C8—H8A109.0C9—C19—H19A109.5
N1—C8—H8B109.0C9—C19—H19B109.5
C9—C8—H8B109.0H19A—C19—H19B109.5
H8A—C8—H8B107.8C9—C19—H19C109.5
C18—C9—C19110.4 (2)H19A—C19—H19C109.5
C18—C9—C10106.9 (2)H19B—C19—H19C109.5
O2—Cu1—O1—C1−174.0 (2)C8—N1—C7—C6177.2 (2)
N1—Cu1—O1—C1−12.9 (2)Cu1—N1—C7—C60.6 (4)
N2—Cu1—O1—C183.6 (3)C5—C6—C7—N1176.6 (2)
O1—Cu1—O2—C17−151.9 (2)C1—C6—C7—N1−6.7 (4)
N1—Cu1—O2—C17100.4 (3)C7—N1—C8—C9108.8 (3)
N2—Cu1—O2—C170.6 (2)Cu1—N1—C8—C9−74.2 (2)
O2—Cu1—N1—C7114.8 (3)N1—C8—C9—C18−86.0 (3)
O1—Cu1—N1—C77.2 (2)N1—C8—C9—C19153.1 (2)
N2—Cu1—N1—C7−144.8 (2)N1—C8—C9—C1032.0 (3)
O2—Cu1—N1—C8−61.9 (3)C11—N2—C10—C9115.7 (3)
O1—Cu1—N1—C8−169.52 (17)Cu1—N2—C10—C9−72.2 (2)
N2—Cu1—N1—C838.50 (18)C18—C9—C10—N2160.8 (2)
O2—Cu1—N2—C110.1 (2)C19—C9—C10—N2−79.2 (3)
O1—Cu1—N2—C11102.4 (3)C8—C9—C10—N240.8 (3)
N1—Cu1—N2—C11−160.3 (2)C10—N2—C11—C12172.3 (2)
O2—Cu1—N2—C10−171.27 (18)Cu1—N2—C11—C121.2 (4)
O1—Cu1—N2—C10−69.0 (3)N2—C11—C12—C13−179.2 (3)
N1—Cu1—N2—C1028.31 (19)N2—C11—C12—C17−3.2 (4)
Cu1—O1—C1—C2−169.15 (18)C17—C12—C13—C14−0.2 (4)
Cu1—O1—C1—C611.1 (4)C11—C12—C13—C14175.9 (2)
O1—C1—C2—C3−178.0 (2)C12—C13—C14—C15−0.6 (4)
C6—C1—C2—C31.9 (4)C12—C13—C14—Br2−178.50 (19)
C1—C2—C3—C40.1 (4)C13—C14—C15—C160.9 (4)
C2—C3—C4—C5−1.3 (4)Br2—C14—C15—C16178.8 (2)
C2—C3—C4—Br1176.5 (2)C14—C15—C16—C17−0.4 (4)
C3—C4—C5—C60.4 (4)Cu1—O2—C17—C16176.52 (18)
Br1—C4—C5—C6−177.39 (19)Cu1—O2—C17—C12−2.5 (4)
C4—C5—C6—C11.7 (4)C15—C16—C17—O2−179.5 (2)
C4—C5—C6—C7178.5 (2)C15—C16—C17—C12−0.4 (4)
O1—C1—C6—C5177.1 (2)C13—C12—C17—O2179.8 (2)
C2—C1—C6—C5−2.7 (4)C11—C12—C17—O23.9 (4)
O1—C1—C6—C70.5 (4)C13—C12—C17—C160.7 (4)
C2—C1—C6—C7−179.3 (2)C11—C12—C17—C16−175.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.932.443.342 (3)163
C10—H10B···Cg1ii0.972.503.324 (3)142

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2161).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arici, C., Ercan, F., Kurtaran, R. & Atakol, O. (2001). Acta Cryst. C57, 812–814. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Blower, P. J. (1998). Transition Met. Chem.23, 109–112.
  • Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  • Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [PubMed]
  • Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev.126, 1–69.
  • Hodgson, D. J. (1975). Prog. Inorg. Chem.19, 173–202.
  • Shahrokhian, S., Amini, M. K., Kia, R. & Tangestaninejad, S. (2000). Anal. Chem.72, 956–962. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography