PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2385.
Published online 2008 November 20. doi:  10.1107/S1600536808037501
PMCID: PMC2959882

2,4-Bis(2-bromo­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Abstract

In the mol­ecular structure of the title compound, C20H19Br2NO, the fused six-membered heterocyclic and cyclo­hexane rings adopt a twin-chair conformation with equatorial orientations of all the substituents. Both the ortho-bromo substituents of the benzene rings are oriented towards the carbonyl group; the dihedral angle between the ring planes is 29.13 (3)°. In the crystal structure, the N—H group does not participate in any hydrogen bonds.

Related literature

For 3-aza­bicyclo­nonan-9-ones and their significance as bio-active mol­ecules, see: Barker et al. (2005 [triangle]); Jeyaraman & Avila (1981 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]); Web & Becker (1967 [triangle]). For a similiar structure see; Parthiban et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2385-scheme1.jpg

Experimental

Crystal data

  • C20H19Br2NO
  • M r = 449.18
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2385-efi1.jpg
  • a = 7.8389 (3) Å
  • b = 10.5770 (3) Å
  • c = 11.0274 (3) Å
  • α = 101.099 (2)°
  • β = 93.725 (2)°
  • γ = 97.399 (1)°
  • V = 885.94 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.58 mm−1
  • T = 298 (2) K
  • 0.45 × 0.38 × 0.35 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1999 [triangle]) T min = 0.232, T max = 0.297 (expected range = 0.157–0.201)
  • 10959 measured reflections
  • 4098 independent reflections
  • 3266 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.060
  • S = 1.00
  • 4098 reflections
  • 221 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2004 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808037501/hb2843sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808037501/hb2843Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

Comment

3-Azabicyclononan-9-ones are important class of compounds due to their significance as bio-active molecules (Jeyaraman & Avila, 1981; Barker et al., 2005).

The title compound, (I), exists in a chair–chair conformation with equatorial orientations of the ortho bromo-phenyl groups on each side of the secondary amino group with the torsion angles of C8—C2—C1—C9 and C8—C6—C7—C15 being 177.88 (4) and 179.42 (6)°, respectively. In both aryl groups, the bromo substituents point towards the carbonyl group and the dihedral angle between the ring planes is 29.13 (3)°. The piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.635 (3)and 0.705 (3)Å, respectively, QT = 0.599 (2)Å, q(2)=0.047 (2)Å, q(3)=0.597 (2)Å, θ = 4.71 (19)° Cremer & Pople, 1975; Web & Becker, 1967), whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.539 (4) and 0.725 (3)Å, respectively, QT = 0.565 (2)Å, q(2)=0.141 (2)Å, q(3)=0.548 (2)Å, θ = 14.4 (2)°, indicating a deviation from the ideal chair conformation of the cyclohexane part in the title compound. The crystal structure is stabilized by the intermolecular van der Waals interactions.

Experimental

A mixture of cyclohexanone (0.05 mol) and ortho bromobenzaldehyde (0.1 mol) was added to a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate until a yellow colour was formed and then cooled to room temperature. Then, 50 ml of ether was added and allowed to stir over night at room temperature. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 v/v ethanol–ether mixture till the solid became colourless. Recrystallization of the compound from acetone gave colourless blocks of (I).

Refinement

The nitrogen-bound H atom was located in a difference map and refined isotropically. The other hydrogen atoms were fixed geometrically (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.

Crystal data

C20H19Br2NOZ = 2
Mr = 449.18F000 = 448
Triclinic, P1Dx = 1.684 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.8389 (3) ÅCell parameters from 5642 reflections
b = 10.5770 (3) Åθ = 2.5–28.2º
c = 11.0274 (3) ŵ = 4.58 mm1
α = 101.099 (2)ºT = 298 (2) K
β = 93.725 (2)ºBlock, colourless
γ = 97.399 (1)º0.45 × 0.38 × 0.35 mm
V = 885.94 (5) Å3

Data collection

Bruker APEXII CCD diffractometer4098 independent reflections
Radiation source: fine-focus sealed tube3266 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.017
T = 298(2) Kθmax = 28.3º
ω scansθmin = 1.9º
Absorption correction: Multi-scan(SADABS; Bruker, 1999)h = −10→10
Tmin = 0.232, Tmax = 0.297k = −13→13
10959 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060  w = 1/[σ2(Fo2) + (0.0207P)2 + 0.5638P] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
4098 reflectionsΔρmax = 0.58 e Å3
221 parametersΔρmin = −0.56 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br1−0.00438 (3)0.47719 (2)0.77681 (2)0.05065 (8)
Br20.16949 (3)1.23193 (3)1.01448 (2)0.06070 (9)
C10.2124 (2)0.74756 (18)0.75331 (18)0.0301 (4)
H10.14370.73700.82280.036*
C20.0889 (2)0.76537 (19)0.64395 (19)0.0344 (4)
H2−0.00490.69180.62540.041*
C30.1735 (3)0.7773 (2)0.5238 (2)0.0428 (5)
H3A0.22940.70110.49800.051*
H3B0.08390.77780.45910.051*
C40.3064 (3)0.8987 (2)0.5360 (2)0.0432 (5)
H4A0.41190.88650.58060.052*
H4B0.33330.91020.45390.052*
C50.2434 (3)1.0214 (2)0.60396 (19)0.0392 (5)
H5A0.16471.05000.54680.047*
H5B0.34181.08950.62800.047*
C60.1515 (2)1.00528 (19)0.72040 (18)0.0331 (4)
H60.09671.08280.74790.040*
C70.2692 (2)0.98341 (18)0.83118 (17)0.0294 (4)
H70.19870.97470.90010.035*
C80.0132 (2)0.8886 (2)0.68529 (18)0.0342 (4)
C90.3014 (2)0.62834 (18)0.72007 (17)0.0304 (4)
C100.4692 (3)0.6383 (2)0.6847 (2)0.0389 (5)
H100.52650.71940.67960.047*
C110.5525 (3)0.5302 (2)0.6570 (2)0.0495 (6)
H110.66410.53920.63280.059*
C120.4711 (3)0.4095 (2)0.6651 (2)0.0556 (6)
H120.52800.33710.64720.067*
C130.3055 (3)0.3958 (2)0.6995 (2)0.0482 (6)
H130.24960.31420.70470.058*
C140.2228 (3)0.50413 (19)0.72632 (19)0.0350 (4)
C150.4125 (2)1.09742 (18)0.87430 (17)0.0290 (4)
C160.3860 (3)1.21258 (19)0.95107 (18)0.0337 (4)
C170.5159 (3)1.3181 (2)0.9863 (2)0.0436 (5)
H170.49461.39381.03800.052*
C180.6757 (3)1.3104 (2)0.9446 (2)0.0499 (6)
H180.76291.38120.96700.060*
C190.7071 (3)1.1976 (2)0.8696 (2)0.0482 (6)
H190.81611.19200.84210.058*
C200.5772 (3)1.0923 (2)0.8347 (2)0.0381 (5)
H200.60031.01660.78390.046*
N10.3422 (2)0.86343 (15)0.79409 (16)0.0304 (4)
O1−0.13950 (19)0.89419 (17)0.68681 (16)0.0521 (4)
H1A0.407 (3)0.851 (2)0.850 (2)0.040 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.04366 (13)0.03775 (13)0.06740 (17)−0.00469 (9)0.01281 (11)0.00737 (11)
Br20.05389 (15)0.06429 (18)0.05949 (17)0.02181 (12)0.01497 (12)−0.01039 (13)
C10.0296 (9)0.0256 (10)0.0349 (10)0.0042 (7)0.0038 (8)0.0056 (8)
C20.0286 (9)0.0300 (10)0.0415 (11)0.0019 (8)−0.0038 (8)0.0035 (9)
C30.0511 (13)0.0398 (12)0.0351 (11)0.0125 (10)−0.0022 (10)−0.0001 (9)
C40.0505 (13)0.0492 (13)0.0325 (11)0.0104 (10)0.0097 (9)0.0107 (10)
C50.0441 (11)0.0369 (12)0.0386 (12)0.0063 (9)−0.0008 (9)0.0138 (9)
C60.0326 (10)0.0299 (10)0.0371 (11)0.0102 (8)0.0012 (8)0.0046 (8)
C70.0300 (9)0.0276 (10)0.0302 (10)0.0044 (7)0.0033 (7)0.0049 (8)
C80.0310 (9)0.0405 (12)0.0327 (11)0.0088 (8)−0.0003 (8)0.0100 (9)
C90.0335 (9)0.0278 (10)0.0295 (10)0.0060 (8)0.0003 (8)0.0046 (8)
C100.0357 (10)0.0380 (12)0.0448 (12)0.0081 (9)0.0059 (9)0.0104 (9)
C110.0417 (12)0.0553 (15)0.0575 (15)0.0220 (11)0.0123 (11)0.0135 (12)
C120.0657 (16)0.0446 (14)0.0637 (16)0.0311 (12)0.0140 (13)0.0109 (12)
C130.0608 (15)0.0297 (12)0.0551 (14)0.0101 (10)0.0065 (11)0.0083 (10)
C140.0371 (10)0.0304 (10)0.0362 (11)0.0041 (8)0.0025 (8)0.0038 (8)
C150.0314 (9)0.0280 (10)0.0284 (10)0.0053 (8)0.0005 (7)0.0079 (8)
C160.0403 (10)0.0322 (11)0.0297 (10)0.0100 (8)0.0010 (8)0.0062 (8)
C170.0646 (15)0.0278 (11)0.0353 (12)0.0034 (10)−0.0054 (10)0.0047 (9)
C180.0547 (14)0.0427 (13)0.0455 (13)−0.0154 (11)−0.0072 (11)0.0108 (11)
C190.0346 (11)0.0573 (15)0.0500 (14)−0.0043 (10)0.0028 (10)0.0117 (12)
C200.0337 (10)0.0375 (11)0.0411 (12)0.0048 (9)0.0047 (9)0.0029 (9)
N10.0292 (8)0.0249 (8)0.0362 (9)0.0055 (6)−0.0050 (7)0.0053 (7)
O10.0292 (7)0.0588 (11)0.0693 (11)0.0119 (7)0.0028 (7)0.0120 (9)

Geometric parameters (Å, °)

Br1—C141.903 (2)C7—H70.9800
Br2—C161.897 (2)C8—O11.207 (2)
C1—N11.465 (2)C9—C101.393 (3)
C1—C91.515 (3)C9—C141.394 (3)
C1—C21.552 (3)C10—C111.382 (3)
C1—H10.9800C10—H100.9300
C2—C81.505 (3)C11—C121.373 (4)
C2—C31.539 (3)C11—H110.9300
C2—H20.9800C12—C131.373 (3)
C3—C41.524 (3)C12—H120.9300
C3—H3A0.9700C13—C141.381 (3)
C3—H3B0.9700C13—H130.9300
C4—C51.525 (3)C15—C201.393 (3)
C4—H4A0.9700C15—C161.391 (3)
C4—H4B0.9700C16—C171.387 (3)
C5—C61.539 (3)C17—C181.369 (3)
C5—H5A0.9700C17—H170.9300
C5—H5B0.9700C18—C191.375 (4)
C6—C81.506 (3)C18—H180.9300
C6—C71.554 (3)C19—C201.385 (3)
C6—H60.9800C19—H190.9300
C7—N11.457 (2)C20—H200.9300
C7—C151.518 (2)N1—H1A0.81 (2)
N1—C1—C9109.63 (15)O1—C8—C2124.48 (19)
N1—C1—C2110.38 (16)O1—C8—C6123.98 (19)
C9—C1—C2112.32 (16)C2—C8—C6111.51 (16)
N1—C1—H1108.1C10—C9—C14116.51 (18)
C9—C1—H1108.1C10—C9—C1121.26 (17)
C2—C1—H1108.1C14—C9—C1122.21 (17)
C8—C2—C3107.21 (17)C11—C10—C9121.5 (2)
C8—C2—C1107.83 (16)C11—C10—H10119.3
C3—C2—C1115.42 (16)C9—C10—H10119.3
C8—C2—H2108.7C12—C11—C10120.3 (2)
C3—C2—H2108.7C12—C11—H11119.9
C1—C2—H2108.7C10—C11—H11119.9
C4—C3—C2114.03 (17)C13—C12—C11119.9 (2)
C4—C3—H3A108.7C13—C12—H12120.1
C2—C3—H3A108.7C11—C12—H12120.1
C4—C3—H3B108.7C12—C13—C14119.5 (2)
C2—C3—H3B108.7C12—C13—H13120.3
H3A—C3—H3B107.6C14—C13—H13120.3
C5—C4—C3112.67 (18)C13—C14—C9122.3 (2)
C5—C4—H4A109.1C13—C14—Br1116.76 (16)
C3—C4—H4A109.1C9—C14—Br1120.89 (15)
C5—C4—H4B109.1C20—C15—C16116.80 (18)
C3—C4—H4B109.1C20—C15—C7120.81 (17)
H4A—C4—H4B107.8C16—C15—C7122.36 (17)
C4—C5—C6114.82 (17)C17—C16—C15122.0 (2)
C4—C5—H5A108.6C17—C16—Br2116.64 (16)
C6—C5—H5A108.6C15—C16—Br2121.32 (15)
C4—C5—H5B108.6C18—C17—C16119.7 (2)
C6—C5—H5B108.6C18—C17—H17120.2
H5A—C5—H5B107.5C16—C17—H17120.2
C8—C6—C5108.13 (16)C17—C18—C19119.9 (2)
C8—C6—C7107.18 (16)C17—C18—H18120.0
C5—C6—C7115.25 (16)C19—C18—H18120.0
C8—C6—H6108.7C18—C19—C20120.3 (2)
C5—C6—H6108.7C18—C19—H19119.9
C7—C6—H6108.7C20—C19—H19119.9
N1—C7—C15110.21 (15)C19—C20—C15121.3 (2)
N1—C7—C6109.31 (15)C19—C20—H20119.3
C15—C7—C6111.09 (15)C15—C20—H20119.3
N1—C7—H7108.7C7—N1—C1113.89 (15)
C15—C7—H7108.7C7—N1—H1A111.0 (16)
C6—C7—H7108.7C1—N1—H1A108.6 (16)
N1—C1—C2—C8−55.2 (2)C9—C10—C11—C12−0.6 (4)
C9—C1—C2—C8−177.89 (16)C10—C11—C12—C130.7 (4)
N1—C1—C2—C364.6 (2)C11—C12—C13—C14−0.3 (4)
C9—C1—C2—C3−58.1 (2)C12—C13—C14—C9−0.2 (3)
C8—C2—C3—C455.1 (2)C12—C13—C14—Br1−178.65 (19)
C1—C2—C3—C4−65.0 (2)C10—C9—C14—C130.2 (3)
C2—C3—C4—C5−45.4 (3)C1—C9—C14—C13−178.10 (19)
C3—C4—C5—C643.4 (3)C10—C9—C14—Br1178.65 (15)
C4—C5—C6—C8−51.3 (2)C1—C9—C14—Br10.3 (3)
C4—C5—C6—C768.6 (2)N1—C7—C15—C2023.6 (2)
C8—C6—C7—N158.74 (19)C6—C7—C15—C20−97.7 (2)
C5—C6—C7—N1−61.6 (2)N1—C7—C15—C16−158.48 (18)
C8—C6—C7—C15−179.43 (15)C6—C7—C15—C1680.2 (2)
C5—C6—C7—C1560.2 (2)C20—C15—C16—C170.5 (3)
C3—C2—C8—O1113.0 (2)C7—C15—C16—C17−177.53 (18)
C1—C2—C8—O1−122.1 (2)C20—C15—C16—Br2−178.76 (15)
C3—C2—C8—C6−64.9 (2)C7—C15—C16—Br23.2 (3)
C1—C2—C8—C659.9 (2)C15—C16—C17—C180.3 (3)
C5—C6—C8—O1−114.9 (2)Br2—C16—C17—C18179.52 (17)
C7—C6—C8—O1120.3 (2)C16—C17—C18—C19−0.9 (3)
C5—C6—C8—C263.1 (2)C17—C18—C19—C200.8 (4)
C7—C6—C8—C2−61.7 (2)C18—C19—C20—C150.0 (3)
N1—C1—C9—C10−24.4 (3)C16—C15—C20—C19−0.6 (3)
C2—C1—C9—C1098.7 (2)C7—C15—C20—C19177.4 (2)
N1—C1—C9—C14153.82 (18)C15—C7—N1—C1178.86 (15)
C2—C1—C9—C14−83.1 (2)C6—C7—N1—C1−58.8 (2)
C14—C9—C10—C110.2 (3)C9—C1—N1—C7−178.59 (16)
C1—C9—C10—C11178.5 (2)C2—C1—N1—C757.2 (2)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2843).

References

  • Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem.13, 4565–4575. [PubMed]
  • Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jeyaraman, R. & Avila, S. (1981). Chem. Rev.81, 149–174.
  • Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008). Acta Cryst. E64, o1586. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Web, N. C. & Becker, M. R. (1967). J. Chem. Soc.B, 1317–1321.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography