PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 December 1; 64(Pt 12): o2456.
Published online 2008 November 26. doi:  10.1107/S1600536808039184
PMCID: PMC2959879

(E)-Ethyl 3-(4-fluoro­anilino)-2-(4-methoxy­phen­yl)acrylate

Abstract

In the title compound, C18H18FNO3, the dihedral angles between the two benzene rings and the plane through the acrylate group and the fluoro­phenyl ring are 61.58 (8) and 13.33 (9)°, respectively. Mol­ecules are linked into ribbons through C—H(...)O and N—H(...)O hydrogen bonds, and further linked by C—H(...)π inter­actions, forming a three-dimensional network.

Related literature

For related literature regarding the anti­microbial activity of 3-aryl­amino-2-aryl acrylates, see: Shi et al. (2007 [triangle]); Xiao et al. (2007 [triangle], 2008 [triangle]); Xue et al. (2007 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-o2456-scheme1.jpg

Experimental

Crystal data

  • C18H18FNO3
  • M r = 315.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-o2456-efi1.jpg
  • a = 19.000 (4) Å
  • b = 6.0400 (12) Å
  • c = 15.081 (3) Å
  • β = 109.64 (3)°
  • V = 1630.0 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.972, T max = 0.981
  • 3073 measured reflections
  • 2943 independent reflections
  • 1807 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.162
  • S = 1.02
  • 2943 reflections
  • 215 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808039184/ez2149sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808039184/ez2149Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was financially supported by the Education Department of Jiangxi Province, P. R. China (grant No. 2007–402).

supplementary crystallographic information

Comment

3-Arylamino-2-aryl acrylates, enamines structurally like Schiff bases, show high antimicrobial activity (Xiao et al., 2007; Xue et al., 2007; Xiao et al., 2008; Shi et al. 2007), especially for bacteria. In a continuation of our work on the structural characterization of enamine derivatives, we report here the crystal structure of the title compound, (I) (Fig. 1).

The N1—H group lies approximately in the same planes as the fluorophenyl and acrylate groups (with dihedral angles of 4.7 (2) ° and 8.9 (2) °, respectively), suggesting that one of the p orbitals of N1 is conjugated with the π molecular orbitals of the two moieties, thus shortening both the C1—N1 (1.408 (3) Å) and C13—N1 (1.359 (3) Å) bonds. All other double and single bond lengths fall within normal values (Allen et al., 1987).

Molecules are linked into ribbons running along the b-axis via C—H···O and N—H···O hydrogen bonds (Fig. 2 and Table 1). These ribbons are interconnected via weak C16-H16B···π (centroid of C1 to C6) and C18-H18A···π (centroid of C7 to C12) interactions (Table 1 and Fig. 3).

Experimental

Equimolar quantities (6 mmol) of ethyl 2-(4-methoxyphenyl)-3- oxopropanoate (1.33 g) and 4-fluorobenzenamine (0.67 g) in absolute alcohol (18 ml) were heated at 344–354 K for 2 h. The excess solvent was removed under reduced pressure. The residue was purified by flash chromatography with EtOAc-petrolum ether (1:10) to afford two fractions. The first fraction gave the Z-isomer, and the second fraction, after partial solvent evaporation, furnished colorless blocks of (I) suitable for single-crystal structure determination.

Refinement

The H atom bonded to N1 was located in a difference Fourier map. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93, 0.96 and 0.97 Å for the aromatic, CH3 and CH2 type H atoms, respectively. Uiso = 1.2Ueq(parent atoms) were assigned for amino, aromatic and CH2 type H-atoms and 1.5Ueq(parent atoms) for CH3 type H-atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound showing the ribbons connected by C—H···O and N—H···O hydrogen bonds (indicated by dashed lines), viewed along the b axis.
Fig. 3.
The crystal packing of the title compound, showing the linking of the hydrogen bonded ribbons by C—H···π interactions. Dashed lines indicate C—H···O, N—H···O ...

Crystal data

C18H18FNO3F000 = 664
Mr = 315.33Dx = 1.285 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
a = 19.000 (4) ÅCell parameters from 1632 reflections
b = 6.0400 (12) Åθ = 1.4–24.7º
c = 15.081 (3) ŵ = 0.10 mm1
β = 109.64 (3)ºT = 293 (2) K
V = 1630.0 (6) Å3Block, colorless
Z = 40.30 × 0.30 × 0.20 mm

Data collection

Enraf–Nonius CAD-4 diffractometer2943 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.026
T = 293(2) Kθmax = 25.3º
ω/2θ scansθmin = 1.1º
Absorption correction: ψ scan(North et al., 1968)h = −22→21
Tmin = 0.972, Tmax = 0.981k = −7→0
3073 measured reflectionsl = 0→18

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050  w = 1/[σ2(Fo2) + (0.0863P)2 + 0.0162P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.162(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.15 e Å3
2943 reflectionsΔρmin = −0.16 e Å3
215 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (4)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.78366 (12)0.7249 (4)0.02705 (17)0.0468 (6)
C20.86057 (14)0.7171 (5)0.0575 (2)0.0637 (8)
H20.88580.60950.10050.076*
C30.90034 (15)0.8673 (6)0.0246 (2)0.0733 (9)
H30.95230.86170.04510.088*
C40.86292 (16)1.0237 (5)−0.0380 (2)0.0682 (9)
C50.78687 (17)1.0339 (5)−0.0708 (2)0.0721 (9)
H50.76201.1403−0.11480.086*
C60.74779 (15)0.8829 (5)−0.0373 (2)0.0640 (8)
H60.69580.8882−0.05880.077*
C70.64691 (12)0.3267 (4)0.14607 (16)0.0431 (6)
C80.59236 (13)0.1688 (4)0.10497 (18)0.0494 (7)
H80.60630.03380.08620.059*
C90.51803 (13)0.2090 (5)0.09161 (18)0.0513 (7)
H90.48250.10130.06390.062*
C100.49607 (13)0.4075 (4)0.11902 (17)0.0470 (6)
C110.54911 (13)0.5661 (4)0.16114 (19)0.0523 (7)
H110.53500.70020.18040.063*
C120.62356 (13)0.5233 (4)0.17434 (19)0.0510 (7)
H120.65910.63020.20320.061*
C130.76733 (13)0.4059 (4)0.12087 (17)0.0465 (6)
H130.81760.36990.13560.056*
C140.72695 (12)0.2824 (4)0.16064 (16)0.0433 (6)
C150.76226 (13)0.0959 (4)0.22121 (18)0.0458 (6)
C160.87264 (15)−0.1081 (5)0.2948 (2)0.0669 (8)
H16A0.8550−0.25140.26710.080*
H16B0.8630−0.09600.35380.080*
C170.95460 (15)−0.0844 (6)0.3113 (3)0.0887 (11)
H17A0.9637−0.10450.25300.133*
H17B0.9817−0.19410.35580.133*
H17C0.97090.06060.33580.133*
C180.39590 (15)0.6241 (5)0.1368 (2)0.0751 (9)
H18A0.42200.63740.20320.113*
H18B0.34320.61300.12550.113*
H18C0.40570.75210.10510.113*
F10.90279 (11)1.1721 (4)−0.07006 (17)0.1125 (8)
H10.6954 (14)0.606 (4)0.0454 (19)0.059 (8)*
N10.74101 (12)0.5785 (4)0.06106 (16)0.0567 (6)
O10.73060 (10)−0.0227 (3)0.26022 (14)0.0667 (6)
O20.83483 (9)0.0669 (3)0.23152 (13)0.0584 (5)
O30.42082 (9)0.4306 (3)0.10206 (13)0.0618 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0401 (13)0.0536 (15)0.0482 (14)−0.0053 (12)0.0170 (11)0.0019 (13)
C20.0465 (15)0.076 (2)0.0642 (17)−0.0017 (15)0.0135 (13)0.0221 (16)
C30.0434 (15)0.093 (2)0.082 (2)−0.0056 (16)0.0193 (15)0.026 (2)
C40.0596 (18)0.073 (2)0.082 (2)−0.0085 (16)0.0371 (16)0.0172 (18)
C50.074 (2)0.065 (2)0.085 (2)0.0109 (16)0.0370 (17)0.0304 (18)
C60.0450 (15)0.0681 (19)0.078 (2)0.0063 (14)0.0193 (14)0.0157 (17)
C70.0403 (13)0.0433 (14)0.0443 (14)−0.0067 (11)0.0125 (10)0.0005 (12)
C80.0456 (14)0.0464 (15)0.0548 (15)−0.0018 (12)0.0150 (12)−0.0075 (13)
C90.0412 (13)0.0540 (17)0.0528 (15)−0.0131 (12)0.0081 (11)−0.0127 (13)
C100.0361 (12)0.0550 (16)0.0482 (14)−0.0008 (12)0.0118 (11)0.0038 (13)
C110.0490 (15)0.0417 (14)0.0668 (17)−0.0045 (12)0.0202 (13)−0.0085 (13)
C120.0449 (14)0.0364 (14)0.0694 (18)−0.0074 (11)0.0164 (13)−0.0033 (13)
C130.0364 (12)0.0493 (15)0.0502 (15)−0.0021 (12)0.0097 (11)0.0004 (13)
C140.0410 (13)0.0406 (14)0.0471 (14)−0.0060 (11)0.0133 (11)−0.0046 (12)
C150.0441 (13)0.0422 (14)0.0521 (15)−0.0065 (12)0.0174 (12)−0.0088 (13)
C160.0616 (17)0.0523 (17)0.076 (2)0.0087 (15)0.0087 (15)0.0069 (16)
C170.0565 (18)0.093 (3)0.104 (3)0.0198 (18)0.0101 (18)0.004 (2)
C180.0521 (16)0.091 (2)0.085 (2)0.0079 (16)0.0267 (16)−0.0201 (19)
F10.0896 (13)0.1078 (17)0.154 (2)−0.0112 (12)0.0592 (14)0.0556 (15)
N10.0359 (12)0.0658 (15)0.0665 (15)0.0010 (12)0.0146 (11)0.0177 (13)
O10.0589 (11)0.0540 (12)0.0889 (15)−0.0014 (10)0.0272 (11)0.0181 (11)
O20.0439 (10)0.0583 (12)0.0718 (13)0.0047 (9)0.0177 (9)0.0084 (10)
O30.0399 (10)0.0733 (13)0.0714 (13)0.0012 (9)0.0177 (9)−0.0061 (11)

Geometric parameters (Å, °)

C1—C61.368 (4)C11—C121.385 (3)
C1—C21.377 (3)C11—H110.9300
C1—N11.408 (3)C12—H120.9300
C2—C31.375 (4)C13—C141.347 (3)
C2—H20.9300C13—N11.359 (3)
C3—C41.355 (4)C13—H130.9300
C3—H30.9300C14—C151.463 (3)
C4—C51.362 (4)C15—O11.208 (3)
C4—F11.363 (3)C15—O21.346 (3)
C5—C61.375 (4)C16—O21.444 (3)
C5—H50.9300C16—C171.499 (4)
C6—H60.9300C16—H16A0.9700
C7—C121.384 (3)C16—H16B0.9700
C7—C81.392 (3)C17—H17A0.9600
C7—C141.486 (3)C17—H17B0.9600
C8—C91.379 (3)C17—H17C0.9600
C8—H80.9300C18—O31.425 (3)
C9—C101.378 (4)C18—H18A0.9600
C9—H90.9300C18—H18B0.9600
C10—O31.372 (3)C18—H18C0.9600
C10—C111.381 (3)N1—H10.83 (2)
C6—C1—C2118.7 (2)C7—C12—H12118.9
C6—C1—N1119.1 (2)C11—C12—H12118.9
C2—C1—N1122.2 (2)C14—C13—N1125.6 (2)
C3—C2—C1120.5 (3)C14—C13—H13117.2
C3—C2—H2119.8N1—C13—H13117.2
C1—C2—H2119.8C13—C14—C15119.6 (2)
C4—C3—C2119.2 (2)C13—C14—C7122.8 (2)
C4—C3—H3120.4C15—C14—C7117.6 (2)
C2—C3—H3120.4O1—C15—O2121.7 (2)
C3—C4—C5121.9 (3)O1—C15—C14124.2 (2)
C3—C4—F1118.8 (3)O2—C15—C14114.2 (2)
C5—C4—F1119.3 (3)O2—C16—C17107.4 (2)
C4—C5—C6118.3 (3)O2—C16—H16A110.2
C4—C5—H5120.8C17—C16—H16A110.2
C6—C5—H5120.8O2—C16—H16B110.2
C1—C6—C5121.4 (2)C17—C16—H16B110.2
C1—C6—H6119.3H16A—C16—H16B108.5
C5—C6—H6119.3C16—C17—H17A109.5
C12—C7—C8117.2 (2)C16—C17—H17B109.5
C12—C7—C14121.8 (2)H17A—C17—H17B109.5
C8—C7—C14120.9 (2)C16—C17—H17C109.5
C9—C8—C7121.1 (2)H17A—C17—H17C109.5
C9—C8—H8119.4H17B—C17—H17C109.5
C7—C8—H8119.4O3—C18—H18A109.5
C10—C9—C8120.5 (2)O3—C18—H18B109.5
C10—C9—H9119.7H18A—C18—H18B109.5
C8—C9—H9119.7O3—C18—H18C109.5
O3—C10—C9115.8 (2)H18A—C18—H18C109.5
O3—C10—C11124.6 (2)H18B—C18—H18C109.5
C9—C10—C11119.6 (2)C13—N1—C1126.5 (2)
C10—C11—C12119.2 (2)C13—N1—H1117.1 (19)
C10—C11—H11120.4C1—N1—H1116.3 (19)
C12—C11—H11120.4C15—O2—C16115.8 (2)
C7—C12—C11122.3 (2)C10—O3—C18118.0 (2)
C6—C1—C2—C30.9 (4)C10—C11—C12—C70.5 (4)
N1—C1—C2—C3−178.1 (3)N1—C13—C14—C15177.8 (2)
C1—C2—C3—C40.1 (5)N1—C13—C14—C7−2.3 (4)
C2—C3—C4—C5−1.3 (5)C12—C7—C14—C13−62.1 (3)
C2—C3—C4—F1179.9 (3)C8—C7—C14—C13119.3 (3)
C3—C4—C5—C61.4 (5)C12—C7—C14—C15117.8 (3)
F1—C4—C5—C6−179.8 (3)C8—C7—C14—C15−60.8 (3)
C2—C1—C6—C5−0.8 (4)C13—C14—C15—O1179.5 (2)
N1—C1—C6—C5178.2 (3)C7—C14—C15—O1−0.4 (4)
C4—C5—C6—C1−0.3 (5)C13—C14—C15—O20.3 (3)
C12—C7—C8—C91.2 (4)C7—C14—C15—O2−179.6 (2)
C14—C7—C8—C9179.8 (2)C14—C13—N1—C1172.4 (2)
C7—C8—C9—C10−0.1 (4)C6—C1—N1—C13176.2 (3)
C8—C9—C10—O3179.7 (2)C2—C1—N1—C13−4.8 (4)
C8—C9—C10—C11−0.7 (4)O1—C15—O2—C16−2.4 (3)
O3—C10—C11—C12−179.9 (2)C14—C15—O2—C16176.8 (2)
C9—C10—C11—C120.5 (4)C17—C16—O2—C15−169.0 (2)
C8—C7—C12—C11−1.3 (4)C9—C10—O3—C18174.3 (2)
C14—C7—C12—C11−180.0 (2)C11—C10—O3—C18−5.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C12—H12···O1i0.932.493.401 (3)167
N1—H1···O3ii0.83 (2)2.56 (3)3.229 (3)138 (2)
C16—H16B···Cg1iii0.972.993.788 (3)141
C18—H18A···Cg2iv0.962.803.626 (3)145

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2149).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun.10, 404–406.
  • Xiao, Z.-P., Fang, R.-Q., Li, H.-Q., Shi, L., Xue, J.-Y., Zheng, Y. & Zhu, H.-L. (2008). Eur. J. Med. Chem 43, 1828–1836. [PubMed]
  • Xiao, Z.-P., Xue, J.-Y., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Bioorg. Med. Chem.15, 4212–4219. [PubMed]
  • Xue, J.-Y., Xiao, Z.-P., Shi, L., Tan, S.-H., Li, H.-Q. & Zhu, H.-L. (2007). Aust. J. Chem.60, 957–962.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography